At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar system was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 1 min temporal and 7.5 m spatial resolution in the lower troposphere. Signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm are analyzed. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. Our detector system consists of a multi-channel wavelength separator unit and data acquisition system. We are developing a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters and are solved to determine the return signals for our lidar system. In this paper, we report on two of the five case studies being investigated: clear sky and cirrus cloud covered molecular atmosphere. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry air atmosphere. The second set of simulations is based on a cloudy atmosphere, where cirrus clouds are added to the conditions in case study I. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results will show comparisons between the simulated and actual measurements when varying lidar and atmospheric optical parameters in the model.