StyleFormer: Real-time Arbitrary Style Transfer via Parametric Style Composition

被引:50
|
作者
Wu, Xiaolei [1 ]
Hu, Zhihao [1 ]
Sheng, Lu [1 ]
Xu, Dong [2 ]
机构
[1] Beihang Univ, Coll Software, Beijing, Peoples R China
[2] Univ Sydney, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV48922.2021.01435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a new feed-forward arbitrary style transfer method, referred to as StyleFormer, which can simultaneously fulfill fine-grained style diversity and semantic content coherency. Specifically, our transformerinspired feature-level stylization method consists of three modules: (a) the style bank generation module for sparse but compact parametric style pattern extraction, (b) the transformer-driven style composition module for contentguided global style composition, and (c) the parametric content modulation module for flexible but faithful stylization. The output stylized images are impressively coherent with the content structure, sensitive to the detailed style variations, but still holistically adhere to the style distributions from the style images. Qualitative and quantitative comparisons as well as comprehensive user studies demonstrate that our StyleFormer outperforms the existing SOTA methods in generating visually plausible stylization results with real-time efficiency.
引用
收藏
页码:14598 / 14607
页数:10
相关论文
共 50 条
  • [31] Intrinsic-style distribution matching for arbitrary style transfer
    Liu, Meichen
    Lin, Songnan
    Zhang, Hengmin
    Zha, Zhiyuan
    Wen, Bihan
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [32] Real-time Style Transfer for Videos to Enhance the Realism of Simulation of Laparoscopic Surgeries
    Shao, Marine
    Clark, James
    Huson, David
    Hardeberg, Jon
    2022 10TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2022,
  • [33] Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer
    Atapour-Abarghouei, Amir
    Breckon, Toby P.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2800 - 2810
  • [34] Arbitrary Image Emotionalizing with Style Transfer
    Luo, Xing
    Zhang, Jiajia
    Wu, Guang
    Chen, Yanxiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 407 - 416
  • [35] RAST: Restorable Arbitrary Style Transfer
    Ma, Yingnan
    Zhao, Chenqiu
    Huang, Bingran
    Li, Xudong
    Basu, Anup
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [36] Arbitrary Portuguese text style transfer
    da Costa, Pablo Botton
    Paraboni, Ivandre
    LINGUAMATICA, 2023, 15 (02): : 19 - 36
  • [37] Style-Aware Normalized Loss for Improving Arbitrary Style Transfer
    Cheng, Jiaxin
    Jaiswal, Ayush
    Wu, Yue
    Natarajan, Pradeep
    Natarajan, Prem
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 134 - 143
  • [38] PARAMETER-FREE STYLE PROJECTION FOR ARBITRARY IMAGE STYLE TRANSFER
    Huang, Siyu
    Xiong, Haoyi
    Wang, Tianyang
    Wen, Bihan
    Wang, Qingzhong
    Chen, Zeyu
    Huan, Jun
    Dou, Dejing
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2070 - 2074
  • [39] Arbitrary style transfer with attentional networks via unbalanced optimal transport
    Li, Jie
    Wu, Liwen
    Xu, Dan
    Yao, Shaowen
    IET IMAGE PROCESSING, 2022, 16 (07) : 1778 - 1792
  • [40] A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive Learning
    Zhang, Yuxin
    Tang, Fan
    Dong, Weiming
    Huang, Haibin
    Ma, Chongyang
    Lee, Tong-Yee
    Xu, Changsheng
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (05):