StyleFormer: Real-time Arbitrary Style Transfer via Parametric Style Composition

被引:50
|
作者
Wu, Xiaolei [1 ]
Hu, Zhihao [1 ]
Sheng, Lu [1 ]
Xu, Dong [2 ]
机构
[1] Beihang Univ, Coll Software, Beijing, Peoples R China
[2] Univ Sydney, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV48922.2021.01435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a new feed-forward arbitrary style transfer method, referred to as StyleFormer, which can simultaneously fulfill fine-grained style diversity and semantic content coherency. Specifically, our transformerinspired feature-level stylization method consists of three modules: (a) the style bank generation module for sparse but compact parametric style pattern extraction, (b) the transformer-driven style composition module for contentguided global style composition, and (c) the parametric content modulation module for flexible but faithful stylization. The output stylized images are impressively coherent with the content structure, sensitive to the detailed style variations, but still holistically adhere to the style distributions from the style images. Qualitative and quantitative comparisons as well as comprehensive user studies demonstrate that our StyleFormer outperforms the existing SOTA methods in generating visually plausible stylization results with real-time efficiency.
引用
收藏
页码:14598 / 14607
页数:10
相关论文
共 50 条
  • [1] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
    Huang, Xun
    Belongie, Serge
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1510 - 1519
  • [2] Real-Time Photo Style Transfer
    Zhao, Hanli
    Jin, Xiaogang
    Shen, Jianbing
    Wei, Feifei
    2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 140 - +
  • [3] Real-Time Neural Style Transfer for Videos
    Huang, Haozhi
    Wang, Hao
    Luo, Wenhan
    Ma, Lin
    Jiang, Wenhao
    Zhu, Xiaolong
    Li, Zhifeng
    Liu, Wei
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7044 - 7052
  • [4] Real-Time Style Transfer with Strength Control
    Kitov, Victor
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 206 - 218
  • [5] Arbitrary style transfer via content consistency and style consistency
    Yu, Xiaoming
    Zhou, Gan
    VISUAL COMPUTER, 2024, 40 (03): : 1369 - 1382
  • [6] A Style-Aware Content Loss for Real-Time HD Style Transfer
    Sanakoyeu, Artsiom
    Kotovenko, Dmytro
    Lang, Sabine
    Ommer, Bjoern
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 715 - 731
  • [7] Arbitrary style transfer via content consistency and style consistency
    Xiaoming Yu
    Gan Zhou
    The Visual Computer, 2024, 40 : 1369 - 1382
  • [8] Real-time Localized Photorealistic Video Style Transfer
    Xia, Xide
    Xue, Tianfan
    Lai, Wei-sheng
    Sun, Zheng
    Chang, Abby
    Kulis, Brian
    Chen, Jiawen
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1088 - 1097
  • [9] DeepStyleCam: A Real-Time Style Transfer App on iOS
    Tanno, Ryosuke
    Matsuo, Shin
    Shimoda, Wataru
    Yanai, Keiji
    MULTIMEDIA MODELING, MMM 2017, PT II, 2017, 10133 : 446 - 449
  • [10] Real-time Style Transfer with Efficient Vision Transformers
    Benmeziane, Hadjer
    Ouarnoughi, Hamza
    El Maghraoui, Kaoutar
    Niar, Smail
    PROCEEDINGS OF THE 5TH INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING (EDGESYS'22), 2022, : 31 - 36