A special class of nilmanifolds admitting an Anosov diffeomorphism

被引:6
作者
Dekimpe, K [1 ]
Malfait, W [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-8500 Kortrijk, Belgium
关键词
Anosov diffeomorphism; nilmanifold; free 2-step nilpotent Lie algebra; hyperbolic automorphism;
D O I
10.1090/S0002-9939-99-05337-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nilmanifold admits an Anosov diffeomorphism if and only if its fundamental group (which is finitely generated, torsion-free and nilpotent) supports an automorphism having no eigenvalues of absolute value one. Here we concentrate on nilpotency class 2 and fundamental groups whose commutator subgroup is of maximal torsion-free rank. We prove that the corresponding nilmanifold admits an Anosov diffeomorphism if and only if the torsion-free rank of the abelianization of its fundamental group is greater than or equal to 3.
引用
收藏
页码:2171 / 2179
页数:9
相关论文
共 5 条
[1]  
ANOSOV D, 1969, P STEKL I, P90
[2]  
MALFAIT W, 1998, ANOSOV DIFFEOMORPHIS
[3]   THERE ARE NO NEW ANOSOV DIFFEOMORPHISMS ON TORI [J].
MANNING, A .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (03) :422-429
[4]  
PORTEOUS HL, 1972, TOPOLOGY, V11, P307