On some extensions of Gauss' work and applications

被引:1
作者
Jung, Ho Yun [1 ]
Koo, Ja Kyung [2 ]
Shin, Dong Hwa [3 ]
机构
[1] Dankook Univ, Dept Math, Cheonan Si 31116, Chungnam, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
[3] Hankuk Univ Foreign Studies, Dept Math, Yongin 17035, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
binary quadratic forms; class field theory; complex multiplication; modular functions;
D O I
10.1515/math-2020-0126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an imaginary quadratic field of discriminant d(K) with ring of integers O-K, and let tau(K) be an element of the complex upper half plane so that O-K = [tau(K), 1]. For a positive integer N, let Q(N)(d(K)) be the set of primitive positive definite binary quadratic forms of discriminant d(K) with leading coefficients relatively prime to N. Then, with any congruence subgroup G of SL2(Z) one can define an equivalence relation (similar to)(Gamma) on Q(N)(d(K)). Let F-Gamma,F-Q denote the field of meromorphic modular functions for G with rational Fourier coefficients. We show that the set of equivalence classes Q(N)(d(K))/(similar to)(Gamma) can be equipped with a group structure isomorphic to Gal(KF Gamma,Q (tau(K))/K) for some Gamma, which generalizes the classical theory of form class groups.
引用
收藏
页码:1915 / 1934
页数:20
相关论文
共 18 条
[1]   Higher composition laws I: A new view on Gauss composition, and quadratic generalizations [J].
Bhargava, M .
ANNALS OF MATHEMATICS, 2004, 159 (01) :217-250
[2]   CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY QUADRATIC FIELDS AND APPLICATIONS [J].
Cho, Bumkyu ;
Koo, Ja Kyung .
QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (02) :199-216
[3]  
Cox D.A, 2013, PURE APPL MATH HOBOK, V2nd
[4]   Binary quadratic forms and ray class groups [J].
Eum, Ick Sun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :695-720
[5]  
Gauss CF., 1801, Disquisitiones arithmeticae
[6]  
Gustav Peter, 1894, BRAUNSCHWEIG
[7]  
Janusz G.J., 1996, ALGEBRAIC NUMBER FIE, Vsecond
[8]   Singular values of principal moduli [J].
Koo, Ja Kyung ;
Shin, Dong Hwa .
JOURNAL OF NUMBER THEORY, 2013, 133 (02) :475-483
[9]  
Kubert D., 1981, GRUNDLEHREN MATH WIS, V244
[10]  
Lang S., 1987, Elliptic Functions, V2, DOI 10.1007/978-1-4757-1949-9