Proper projective symmetry in the most general non-static spherically symmetric four-dimensional Lorentzian manifolds

被引:1
|
作者
Shabbir, Ghulam [1 ]
Mahomed, F. M. [2 ,3 ]
Qureshi, M. A. [1 ]
机构
[1] GIK Inst Engn Sci & Technol, Fac Engn Sci, Swabi, Kpk, Pakistan
[2] Univ Witwatersrand, Sch Computat & Appl Math, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Curvature eigenvalues and eigenbivectors; direct integration and algebraic techniques; proper projective vector field; 2ND-ORDER DIFFERENTIAL-EQUATIONS; SPACE-TIMES; VECTOR-FIELDS; COLLINEATIONS; TRANSFORMATIONS; HOLONOMY; SYSTEMS;
D O I
10.1142/S0219887816500092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A study of proper projective symmetry in the most general form of non-static spherically symmetric space-time is given using direct integration and algebraic techniques. In this study, we show that when the above space-time admits proper projective symmetry it becomes a very special class of static spherically symmetric space-times.
引用
收藏
页数:8
相关论文
共 4 条