Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures

被引:1
|
作者
Olsen, L [1 ]
机构
[1] Univ St Andrews, Dept Math, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a Borel probability measure on R-d. We study the Hausdorff dimension and the packing dimension of the multifractal Hausdorff measure H-mu(q,t) and the multifractal packing measure P-mu(q,t) introduced in [L. Olsen, A multifractal formalism, Advances in Mathematics 116 (1995), 82-196]. Let b(mu) denote the multifractal Hausdorff dimension function and let B-mu denote the multifractal packing dimension function introduced in [Olsen, op cit]. For a fixed q is an element of R, we obtain bounds for the Hausdorff dimension and the packing dimension of H-mu(q,b mu(q)) and P-mu(q,B mu(q)) in terms of the subdifferential of b(mu) and B-mu at g. For q = 1, our result reduces to [GRAPHICS] where D-Bmu(1) and D+Bmu(1) denote the left and right derivative of B-mu at 1. Inequality (*) improves a similar result obtained independently by Y. Heurteaux and S.-Z. Ngai. It follows from (*) that if the mulifractal box dimension spectrum (or L-q spectrum) tau(mu) of mu is differentiable at 1 then -tau(mu)'(1) equals the entropy dimension (or information dimension) of mu. This result has been conjectured in the physics literature and proved rigorously in certain special cases.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 50 条
  • [21] CLUSTERING PARADIGMS AND MULTIFRACTAL MEASURES
    MARTINEZ, VJ
    JONES, BJT
    DOMINGUEZTENREIRO, R
    VANDEWEYGAERT, R
    ASTROPHYSICAL JOURNAL, 1990, 357 (01): : 50 - 61
  • [22] General multifractal dimensions of measures
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2025, 499
  • [23] Multifractal spectrum of multinomial measures
    Okada, T
    Sekiguchi, T
    Shiota, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (07) : 123 - 125
  • [24] Multifractal measures of image quality
    Langi, AZR
    Soemintapura, K
    Mengko, TL
    Kinsner, W
    ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 726 - 730
  • [25] SPECTRAL PROPERTIES OF MULTIFRACTAL MEASURES
    PISARENKO, VF
    PISARENKO, DV
    PHYSICS LETTERS A, 1991, 153 (4-5) : 169 - 172
  • [26] MULTIFRACTAL MEASURES, ESPECIALLY FOR THE GEOPHYSICIST
    MANDELBROT, BB
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 5 - 42
  • [27] Revisiting the multifractal analysis of measures
    Ben Nasr, Fathi
    Peyriere, Jacques
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 315 - 328
  • [28] Multidimensional Multifractal Random Measures
    Rhodes, Remi
    Vargas, Vincent
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 241 - 258
  • [29] Large deviations of multifractal measures
    Veneziano, D
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 117 - 129
  • [30] Multifractal variation for projections of measures
    Douzi, Zied
    Selmi, Bilel
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 414 - 420