Statistical solutions and Onsager's conjecture

被引:31
作者
Fjordholm, U. S. [1 ]
Wiedemann, E. [2 ]
机构
[1] Univ Oslo, Dept Math, Postboks 1053 Blindern, N-0316 Oslo, Norway
[2] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
Incompressible Euler equations; Onsager's conjecture; Statistical solutions; Energy conservation; MEASURE-VALUED SOLUTIONS; NAVIER-STOKES EQUATIONS; ENERGY-CONSERVATION; WEAK SOLUTIONS; EULER EQUATIONS; DISSIPATION; LAWS;
D O I
10.1016/j.physd.2017.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of Onsager's conjecture on the conservation of energy for the incompressible Euler equations in the context of statistical solutions, as introduced recently by Fjordholm et al. (2017). As a byproduct, we also obtain an alternative proof for the conservative direction of Onsager's conjecture for weak solutions, under a weaker Besov-type regularity assumption than previously known. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [21] The Onsager conjecture in 2D: a Newton-Nash iteration
    Giri, Vikram
    Radu, Razvan-Octavian
    INVENTIONES MATHEMATICAE, 2024, 238 (02) : 691 - 768
  • [22] LECTURES ON THE ONSAGER CONJECTURE
    Shvydkoy, Roman
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03): : 473 - 496
  • [23] On the inviscid limit of the compressible Navier-Stokes equations near Onsager's regularity in bounded domains
    Chen, Robin Ming
    Liang, Zhilei
    Wang, Dehua
    Xu, Runzhang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (01) : 1 - 22
  • [24] On the Extension of Onsager’s Conjecture for General Conservation Laws
    Claude Bardos
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Edriss S. Titi
    Emil Wiedemann
    Journal of Nonlinear Science, 2019, 29 : 501 - 510
  • [25] On the Extension of Onsager's Conjecture for General Conservation Laws
    Bardos, Claude
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Titi, Edriss S.
    Wiedemann, Emil
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 501 - 510
  • [26] An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
    Drivas, Theodore D.
    Eyink, Gregory L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) : 733 - 763
  • [27] Remarks on the "Onsager Singularity Theorem" for Leray-Hopf Weak Solutions: The Holder Continuous Case
    Berselli, Luigi C.
    MATHEMATICS, 2023, 11 (04)
  • [28] The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly
    Eyink, Gregory L.
    Kumar, Samvit
    Quan, Hao
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2218):
  • [29] An Onsager singularity theorem for Leray solutions of incompressible Navier-Stokes
    Drivas, Theodore D.
    Eyink, Gregory L.
    NONLINEARITY, 2019, 32 (11) : 4465 - 4482
  • [30] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Boutros, Daniel W.
    Markfelder, Simon
    Titi, Edriss S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)