Statistical solutions and Onsager's conjecture

被引:33
作者
Fjordholm, U. S. [1 ]
Wiedemann, E. [2 ]
机构
[1] Univ Oslo, Dept Math, Postboks 1053 Blindern, N-0316 Oslo, Norway
[2] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
Incompressible Euler equations; Onsager's conjecture; Statistical solutions; Energy conservation; MEASURE-VALUED SOLUTIONS; NAVIER-STOKES EQUATIONS; ENERGY-CONSERVATION; WEAK SOLUTIONS; EULER EQUATIONS; DISSIPATION; LAWS;
D O I
10.1016/j.physd.2017.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of Onsager's conjecture on the conservation of energy for the incompressible Euler equations in the context of statistical solutions, as introduced recently by Fjordholm et al. (2017). As a byproduct, we also obtain an alternative proof for the conservative direction of Onsager's conjecture for weak solutions, under a weaker Besov-type regularity assumption than previously known. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
[21]   The Onsager conjecture in 2D: a Newton-Nash iteration [J].
Giri, Vikram ;
Radu, Razvan-Octavian .
INVENTIONES MATHEMATICAE, 2024, 238 (02) :691-768
[22]   LECTURES ON THE ONSAGER CONJECTURE [J].
Shvydkoy, Roman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :473-496
[23]   On the inviscid limit of the compressible Navier-Stokes equations near Onsager's regularity in bounded domains [J].
Chen, Robin Ming ;
Liang, Zhilei ;
Wang, Dehua ;
Xu, Runzhang .
SCIENCE CHINA-MATHEMATICS, 2024, 67 (01) :1-22
[24]   On the Extension of Onsager’s Conjecture for General Conservation Laws [J].
Claude Bardos ;
Piotr Gwiazda ;
Agnieszka Świerczewska-Gwiazda ;
Edriss S. Titi ;
Emil Wiedemann .
Journal of Nonlinear Science, 2019, 29 :501-510
[25]   On the Extension of Onsager's Conjecture for General Conservation Laws [J].
Bardos, Claude ;
Gwiazda, Piotr ;
Swierczewska-Gwiazda, Agnieszka ;
Titi, Edriss S. ;
Wiedemann, Emil .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) :501-510
[26]   An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations [J].
Drivas, Theodore D. ;
Eyink, Gregory L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) :733-763
[27]   Remarks on the "Onsager Singularity Theorem" for Leray-Hopf Weak Solutions: The Holder Continuous Case [J].
Berselli, Luigi C. .
MATHEMATICS, 2023, 11 (04)
[28]   The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly [J].
Eyink, Gregory L. ;
Kumar, Samvit ;
Quan, Hao .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2218)
[29]   An Onsager singularity theorem for Leray solutions of incompressible Navier-Stokes [J].
Drivas, Theodore D. ;
Eyink, Gregory L. .
NONLINEARITY, 2019, 32 (11) :4465-4482
[30]   On energy conservation for the hydrostatic Euler equations: an Onsager conjecture [J].
Boutros, Daniel W. ;
Markfelder, Simon ;
Titi, Edriss S. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)