Some large-scale matrix computation problems

被引:147
作者
Bai, ZJ
Fahey, M
Golub, G
机构
[1] UNIV KENTUCKY, DEPT MATH, LEXINGTON, KY 40506 USA
[2] STANFORD UNIV, DEPT COMP SCI, SCI COMP & COMPUTAT MATH PROGRAM, STANFORD, CA 94305 USA
基金
美国国家科学基金会;
关键词
bilinear form; Gaussian quadrature; trace; determinant; matrix inverse; Monte Carlo simulation; probabilistic bound;
D O I
10.1016/0377-0427(96)00018-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are numerous applications in physics, statistics and electrical circuit simulation where it is required to bound entries and the trace of the inverse and the determinant of a large sparse matrix. All these computational tasks are related to the central mathematical problem studied in this paper, namely, bounding the bilinear form u(T)f(A)nu for a given matrix A and vectors u and nu, where f is a given smooth function and is defined on the spectrum of A. We will study a practical numerical algorithm for bounding the bilinear form, where the matrix A is only referenced through matrix-vector multiplications. A Monte Carlo method is also presented to efficiently estimate the trace of the inverse and the determinant of a large sparse matrix.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 22 条
[1]  
[Anonymous], 237 U MANCH
[2]  
Davis P.J., 1984, METHODS NUMERICAL IN
[3]   STOCHASTIC ESTIMATION WITH Z2 NOISE [J].
DONG, SJ ;
LIU, KF .
PHYSICS LETTERS B, 1994, 328 (1-2) :130-136
[4]  
GAUTSCHI W, 1981, EB CHRISTOFFEL INFLU, P73
[5]  
GOLUB G, 1993, SCCM9308 STANF U COM
[6]  
GOLUB G, 1993, SCCM9307 STANF U COM
[7]  
GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
[8]   MODIFIED MOMENTS FOR INDEFINITE WEIGHT-FUNCTIONS [J].
GOLUB, GH ;
GUTKNECHT, MH .
NUMERISCHE MATHEMATIK, 1990, 57 (6-7) :607-624
[9]  
Golub GH, 1989, MATRIX COMPUTATIONS
[10]  
Hockney G. M., 1990, Nuclear Physics B, Proceedings Supplements, V17, P301, DOI 10.1016/0920-5632(90)90259-W