Transaction Costs-Aware Portfolio Optimization via Fast Lowner-John Ellipsoid Approximation

被引:0
|
作者
Shen, Weiwei [1 ]
Wang, Jun [2 ]
机构
[1] GE Global Res Ctr, Niskayuna, NY 12309 USA
[2] Alibaba Grp, Inst Data Sci & Technol, Seattle, WA USA
来源
PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2015年
关键词
SELECTION; CONSUMPTION; SIMULATION; CHOICE; ALLOCATION; RULES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Merton's portfolio optimization problem in the presence of transaction costs for multiple assets has been an important and challenging problem in both theory and practice. Most existing work suffers from curse of dimensionality and encounters with the difficulty of generalization. In this paper, we develop an approximate dynamic programing method of synergistically combining the Lowner-John ellipsoid approximation with conventional value function iteration to quantify the associated optimal trading policy. Through constructing Lowner-John ellipsoids to parameterize the optimal policy and taking Euclidean projections onto the constructed ellipsoids to implement the trading policy, the proposed algorithm has cut computational costs up to a factor of five hundred and meanwhile achieved near-optimal risk-adjusted returns across both synthetic and real-world market datasets.
引用
收藏
页码:1854 / 1860
页数:7
相关论文
empty
未找到相关数据