Synthesis of Fe3O4/graphene oxide/pristine graphene ternary composite and fabrication electrochemical sensor to detect dopamine and hydrogen peroxide

被引:20
作者
Cai, Linlin [1 ]
Hou, Bingjie [1 ]
Shang, Yangyang [1 ]
Xu, Liao [1 ]
Zhou, Bo [1 ]
Jiang, Xinning [2 ]
Jiang, Xiaoqing [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Coll Chem & Mat Sci, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing City Vocat Coll, 462 Heyan Rd, Nanjing 210002, Jiangsu, Peoples R China
关键词
Pristine graphene; Graphene oxide; Fe3O4; nanoparticle; Dopamine; Hydrogen peroxide; Sensor; IRON-OXIDE NANOPARTICLES; NITROGEN-DOPED GRAPHENE; ONE-POT SYNTHESIS; ASCORBIC-ACID; PRISTINE GRAPHENE; URIC-ACID; NANOCOMPOSITE; FE3O4; BIOSENSOR; GLUCOSE;
D O I
10.1016/j.cplett.2019.136797
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a new Fe3O4/graphene oxide (GO)/pristine graphene (PG) ternary composite (Fe3O4/GO/PG) was successfully synthesized. The structure of Fe3O4/GO/PG was characterized by transmission electron microscopy (TEM). The TEM result shows that the small PG sheets are attached to the larger GO sheets and the Fe3O4 nanoparticles are anchored on the surface of GO/PG composite. A sensor based on this Fe3O4/GO/PG has been fabricated successfully to detect dopamine (DA) and hydrogen peroxide (H2O2). The linear detection ranges for DA and H2O2 are 0.30-30 mu M and 0.50-277 mu M, respectively, with detection limits of 0.18 and 0.09 mu M.
引用
收藏
页数:6
相关论文
共 46 条
[1]  
Ahour F, 2019, ANAL BIOANAL ELECTRO, V11, P812
[2]   Non enzymatic hydrogen peroxide detection at ruthenium oxide-gold nano particle-Nafion modified electrode [J].
Anjalidevi, C. ;
Dharuman, V. ;
Narayanan, J. Shankara .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 182 :256-263
[3]   Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide [J].
Chang, Qing ;
Tang, Heqing .
MICROCHIMICA ACTA, 2014, 181 (5-6) :527-534
[4]   Recent advances in electrochemical sensing for hydrogen peroxide: a review [J].
Chen, Wei ;
Cai, Shu ;
Ren, Qiong-Qiong ;
Wen, Wei ;
Zhao, Yuan-Di .
ANALYST, 2012, 137 (01) :49-58
[5]   Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure [J].
Chin, Ang Bee ;
Yaacob, Iskandar Idris .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 191 (1-3) :235-237
[6]   A simple and practical route to prepare useable pristine graphene for electrochemical applications [J].
Du, Wencheng ;
Qi, Shaopeng ;
Zhu, Yinyan ;
Sun, Peipei ;
Zhu, Lihua ;
Jiang, Xiaoqing .
CHEMICAL ENGINEERING JOURNAL, 2015, 262 :658-664
[7]   A surfactant-free water-processable all-carbon composite and its application to supercapacitor [J].
Du, Wencheng ;
Qi, Shaopeng ;
Zhou, Bo ;
Sun, Peipei ;
Zhu, Lihua ;
Jiang, Xiaoqing .
ELECTROCHIMICA ACTA, 2014, 146 :353-358
[8]   Fast electron transfer kinetics on electrodes composed of graphene oxide 'patched' with direct exfoliated pristine graphene nanosheets [J].
Du, Wencheng ;
Zhou, Bo ;
Jiang, Xiaoqing .
CHEMICAL PHYSICS LETTERS, 2014, 595 :1-5
[9]   Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene [J].
Du, Wencheng ;
Lu, Jie ;
Sun, Peipei ;
Zhu, Yinyan ;
Jiang, Xiaoqing .
CHEMICAL PHYSICS LETTERS, 2013, 568 :198-201
[10]   Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite [J].
Fan, Yang ;
Lu, Hai-Ting ;
Liu, Jin-Hang ;
Yang, Chun-Peng ;
Jing, Qiang-Shan ;
Zhang, Yu-Xia ;
Yang, Xing-Kun ;
Huang, Ke-Jing .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2011, 83 (01) :78-82