On singular solutions of the initial boundary value problem for the Stokes system in a power cusp domain

被引:5
作者
Eismontaite, Alicija [1 ]
Pileckas, Konstantin [1 ]
机构
[1] Vilnius Univ, Inst Appl Math, Fac Math & Informat, Vilnius, Lithuania
关键词
Non-stationary Stokes problem; power cusp domain; singular solutions; asymptotic expansion; ASYMPTOTIC ANALYSIS; DIRICHLET PROBLEM; EQUATIONS; COMPONENTS; EXISTENCE; SPECTRUM; WATER; LAYER; FLUX; FLOW;
D O I
10.1080/00036811.2018.1460815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial boundary value problem for the non-steady Stokes system is considered in bounded domains with the boundary having a peak-type singularity (power cusp singularity). The case of the boundary value with a nonzero time-dependent flow rate is studied. The formal asymptotic expansion of the solution near the singular point is constructed. This expansion contains both the outer asymptotic expansion and the boundary-layer-in-time corrector with the 'fast time' variable depending on the distance to the cusp point. The solution of the problem is constructed as the sum of the asymptotic expansion and the term with finite energy.
引用
收藏
页码:2400 / 2422
页数:23
相关论文
共 36 条
  • [1] ADAMS R. A., 2003, SOBOLEV SPACES
  • [2] [Anonymous], 2011, J MATH SCI-U TOKYO
  • [3] Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary
    Cardone, G.
    Nazarov, S. A.
    Sokolowski, J.
    [J]. ASYMPTOTIC ANALYSIS, 2009, 62 (1-2) : 41 - 88
  • [4] Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain
    Cardone, Giuseppe
    Nazarov, Sergey A.
    Sokolowski, Jan
    Taskinen, Jari
    [J]. COMPTES RENDUS MECANIQUE, 2007, 335 (12): : 763 - 767
  • [5] On singular solutions of time-periodic and steady Stokes problems in a power cusp domain
    Eismontaite, Alicija
    Pileckas, Konstantin
    [J]. APPLICABLE ANALYSIS, 2018, 97 (03) : 415 - 437
  • [6] A removable isolated singularity theorem for the stationary Navier-Stokes equations
    Kim, H
    Kozono, H
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 220 (01) : 68 - 84
  • [7] The flux problem for the Navier-Stokes equations
    Korobkov, M. V.
    Pileckas, K.
    Pukhnachev, V. V.
    Russo, R.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (06) : 1065 - 1122
  • [8] On the nonstationary Stokes system in a cone
    Kozlov, Vladimir
    Rossmann, Juergen
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (12) : 8277 - 8315
  • [9] Ladyzhenskaya O.A., 1976, Zap. Nauchn. Sem. LOMI, V59, P81, DOI [10.1007/BF01566606, DOI 10.1007/BF01566606]
  • [10] Ladyzhenskaya O.A., 1969, The Mathematical Theory of Viscous Incompressible Flow