An uniform boundedness for Bochner-Riesz operators related to the Hankel transform

被引:3
作者
Ciaurri, O [1 ]
Varona, JL [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Edificio JL Vives, Logrono 26004, Spain
关键词
Bochner-Riesz operator; multipliers; Hankel transform; Fourier-Neumann series;
D O I
10.1080/1025583021000022487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-alpha be the modified Hankel transform H-alpha(f,x) = integral(0)(infinity) Jalpha(xt)/(xt)(alpha) f(t) t(2alpha+1) dt, defined for suitable functions and extended to some L-p((0,infinity), x(2alpha+1)) spaces. Given delta > 0, let M-alpha(delta) be the Bochner-Riesz operator for the Hankel transform. Also, we take the following generalization H-alpha(k)(f,x) = integral(0)(infinity) J(alpha+k)(xt)/(xt)(alpha) f(t) t(2alpha+1), dt, k = 0,1,2,... for the Hankel transform, and define M-alpha,k(delta) as M(alpha,k)(delta)f = H-alpha(k) ((1-x(2))(+)(delta) H(alpha)(k)f), k = 0,1,2,... (thus, in particular, M-alpha(delta) = M-alpha,0(delta)). In the paper, we study the uniform boundedness of {M-alpha,k(delta)}(kis an element ofN) in L-p((0,infinity),x(2alpha+1)) spaces when alpha greater than or equal to 0. We found that, for delta > (2alpha+1)/2 (the critical index), the uniform boundedness of {M-alpha,k(delta)}(k=0)(infinity) is satisfied for every p in the range 1 less than or equal to p less than or equal to infinity. And, for 0 less than or equal to delta less than or equal to (2alpha+1)/2 , the uniform boundedness happens if and only if 4(alpha+1)/2alpha+3+2delta < p < 4(alpha+1)/2alpha+1-2delta. In the paper, the case delta = 0 (the corresponding generalization of the chi([0,1])-multiplier for the Hankel transform) is previously analyzed; here, for alpha> -1 . For this value of delta, the uniform boundedness of {M-alpha,k(0)}(k=0)(infinity) is related to the convergence of Fourier-Neumann series.
引用
收藏
页码:759 / 777
页数:19
相关论文
共 50 条
[11]   The commutator of the Bochner-Riesz operator [J].
Hu, GE ;
Lu, SZ .
TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (02) :259-266
[12]   Sparse Bounds for Bochner-Riesz Multipliers [J].
Lacey, Michael T. ;
Mena, Dario ;
Reguera, Maria Carmen .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (02) :523-537
[13]   Maximal Bochner-Riesz operators on Hardy-type spaces in the Dunkl setting [J].
Soltani, Fethi .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (08) :613-627
[14]   A note on commutators of Bochner-Riesz operator [J].
Lu S. ;
Xia X. .
Frontiers of Mathematics in China, 2007, 2 (3) :439-446
[15]   Bochner-Riesz Means of Morrey Functions [J].
Adams, David R. ;
Xiao, Jie .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
[16]   COMPACTNESS FOR THE COMMUTATOR OF BOCHNER-RIESZ OPERATOR [J].
卜瑞 ;
陈杰诚 ;
胡国恩 .
Acta Mathematica Scientia, 2017, 37 (05) :1373-1384
[17]   Weighted Lipschitz Estimate for Commutator of Bochner-Riesz Operators on Weighted Morrey Spaces [J].
Shanshan Zhang ;
Lisheng Shu .
Analysis in Theory and Applications, 2014, 30 (02) :151-163
[18]   A sharp estimate for multilinear Bochner-Riesz operator [J].
Wu, BS ;
Liu, LZ .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (01) :47-59
[19]   Improved bound for the bilinear Bochner-Riesz operator [J].
Jeong, Eunhee ;
Lee, Sanghyuk ;
Vargas, Ana .
MATHEMATISCHE ANNALEN, 2018, 372 (1-2) :581-609
[20]   WEIGHTED IN EQUALITIES FOR FOURIER MULTIPLIER OPERATORS OF BOCHNER-RIESZ TYPE ON R2 [J].
Sato, S. .
ACTA MATHEMATICA HUNGARICA, 2023, 171 (02) :301-324