Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets

被引:41
作者
Young, Matthew P. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Subconvexity; L-functions; equidistribution; Heegner points; AUTOMORPHIC L-FUNCTIONS; DIRICHLET L-FUNCTIONS; HALF-INTEGRAL WEIGHT; MODULAR-FORMS; FOURIER COEFFICIENTS; CENTRAL VALUES; MAASS FORMS; CUSP FORMS; EQUIDISTRIBUTION; GL(3);
D O I
10.4171/JEMS/699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be odd and squarefree, and let chi(q) be the quadratic Dirichlet character of conductor q. Let u(j) be a Hecke-Maass cusp form on Gamma(0) (q) with spectral parameter t(j). By an extension of work of Conrey and Iwaniec, we show L(u(j) x chi(q) ,1/2) <<(epsilon) q(1 + vertical bar t(j)vertical bar))(1/3+epsilon) , uniformly in both q and t(j). A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k. Furthermore, we show that vertical bar L(1/2 + it, chi(q))vertical bar <<(epsilon) ((1 + vertical bar t vertical bar)(q))(1/6+epsilon) , improving on a result of Heath-Brown. As a consequence of these new bounds, we obtain explicit estimates for the number of Heegner points of large odd discriminant in shrinking sets.
引用
收藏
页码:1545 / 1576
页数:32
相关论文
共 29 条
[1]   Hybrid bounds for twisted L-functions [J].
Blomer, Valentin ;
Harcos, Gergely .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 621 :53-79
[2]   DISTRIBUTION OF MASS OF HOLOMORPHIC CUSP FORMS [J].
Blomer, Valentin ;
Khan, Rizwanur ;
Young, Matthew .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (14) :2609-2644
[3]   SUBCONVEXITY FOR TWISTED L-FUNCTIONS ON GL(3) [J].
Blomer, Valentin .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) :1385-1421
[4]  
Burgess DA., 1962, P LOND MATH SOC, V3, P193, DOI DOI 10.1112/PLMS/S3-12.1.193
[5]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[6]   HYPERBOLIC DISTRIBUTION PROBLEMS AND HALF-INTEGRAL WEIGHT MAASS FORMS [J].
DUKE, W .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :73-90
[7]   LARGE SIEVE DENSITY ESTIMATE NEAR SIGMA=1 [J].
GALLAGHER, PX .
INVENTIONES MATHEMATICAE, 1970, 11 (04) :329-+
[8]  
Gradshteyn I., 2000, Tables of Integrals, Series, and Products, DOI [10.1016/C2010-0-64839-5, DOI 10.1016/C2010-0-64839-5]
[9]   On the positivity of the central critical values of automorphic L-functions for GL(2) [J].
Guo, JD .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) :157-190
[10]   The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II [J].
Harcos, G ;
Michel, P .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :581-655