Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos

被引:131
作者
Lund, Elsebet [1 ]
Liu, Mingzhu [1 ]
Hartley, Rebecca S. [2 ]
Sheets, Michael D. [1 ]
Dahlberg, James E. [1 ]
机构
[1] Univ Wisconsin, Dept Biomol Chem, Sch Med & Publ Hlth, Madison, WI 53706 USA
[2] Univ New Mexico, Hlth Sci Ctr, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA
关键词
deadenylation; microRNA-427; function; miRNA biogenesis; Xenopus embryo-specific miRNA; maternal mRNA; POSTTRANSCRIPTIONAL REGULATION; GERM PLASM; CYCLIN A1; MICRORNAS; GENE; FAMILY; TRANSLATION; EXPRESSION; ZEBRAFISH; PROTEINS;
D O I
10.1261/rna.1882009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We show that microRNA-427 (miR-427) mediates the rapid deadenylation of maternal mRNAs after the midblastula transition (MBT) of Xenopus laevis embryogenesis. By MBT, the stage when the embryonic cell cycle is remodeled and zygotic transcription of mRNAs is initiated, each embryo has accumulated similar to 10(9) molecules of miR-427 processed from multimeric pri-miR-427 transcripts synthesized after fertilization. We demonstrate that the maternal mRNAs for cyclins A1 and B2 each contain a single miR-427 target sequence, spanning less than 30 nucleotides, that is both necessary and sufficient for deadenylation, and that inactivation of miR-427 leads to stabilization of the mRNAs. Although this deadenylation normally takes place after MBT, exogenous miRNAs produced prematurely in vivo can promote deadenylation prior to MBT, indicating that turnover of the maternal mRNAs is limited by the amount of accumulated miR-427. Injected transcripts comprised solely of the cyclin mRNA 3' untranslated regions or bearing a 5' ApppG cap undergo deadenylation, showing that translation of the targeted RNA is not required. miR-427 is not unique in promoting deadenylation, as an unrelated miRNA, let-7, can substitute for miR-427 if the reporter RNA contains an appropriate let-7 target site. We propose that miR-427, like the orthologous miR-430 of zebrafish, functions to down-regulate expression of maternal mRNAs early in development.
引用
收藏
页码:2351 / 2363
页数:13
相关论文
共 69 条
[1]  
[Anonymous], 1994, Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis
[2]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[3]   Zygotic control of maternal cyclin A1 translation and mRNA stability [J].
Audic, Y ;
Garbrecht, M ;
Fritz, B ;
Sheets, MD ;
Hartley, RS .
DEVELOPMENTAL DYNAMICS, 2002, 225 (04) :511-521
[4]   Zygotic regulation of maternal cyclin A1 and B2 mRNAs [J].
Audic, Y ;
Anderson, C ;
Bhatty, R ;
Hartley, RS .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1662-1671
[5]   Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation [J].
Barnard, DC ;
Ryan, K ;
Manley, JL ;
Richter, JD .
CELL, 2004, 119 (05) :641-651
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes [J].
Behm-Ansmant, Isabelle ;
Rehwinkel, Jan ;
Doerks, Tobias ;
Stark, Alexander ;
Bork, Peer ;
Izaurralde, Elisa .
GENES & DEVELOPMENT, 2006, 20 (14) :1885-1898
[8]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[9]   C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts [J].
Bortolin-Cavaille, Marie-Line ;
Dance, Marie ;
Weber, Michel ;
Cavaille, Jerome .
NUCLEIC ACIDS RESEARCH, 2009, 37 (10) :3464-3473
[10]   Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila [J].
Bushati, Natascha ;
Stark, Alexander ;
Brennecke, Julius ;
Cohen, Stephen M. .
CURRENT BIOLOGY, 2008, 18 (07) :501-506