Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases

被引:11
|
作者
Iablokov, Stanislav N. [1 ,2 ]
Klimenko, Natalia S. [3 ,4 ]
Efimova, Daria A. [3 ]
Shashkova, Tatiana [3 ,5 ]
Novichkov, Pavel S. [6 ,7 ]
Rodionov, Dmitry A. [1 ,8 ]
Tyakht, Alexander V. [3 ,4 ]
机构
[1] Russian Acad Sci, AA Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
[2] PG Demidov Yaroslavl State Univ, Yaroslavl, Russia
[3] Knomics LLC, Atlas Biomed Grp, London, England
[4] Russian Acad Sci, Inst Gene Biol, Ctr Precis Genome Editing & Genet Technol Biomed, Moscow, Russia
[5] Moscow Inst Phys & Technol, Moscow, Russia
[6] PhenoBiome Inc, San Francisco, CA USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[8] Sanford Burnham Prebys Med Discovery Inst, La Jolla, CA 92037 USA
基金
俄罗斯科学基金会;
关键词
gut microbiome; metabolic phenotypes; inflammatory bowel diseases; machine learning; classifier; 16S rRNA sequencing; CHAIN FATTY-ACIDS; CROHNS-DISEASE; BUTYRATE; BACTERIA; DETERMINANTS; ANNOTATION; DYSBIOSIS; PROJECT; GENOME; HOST;
D O I
10.3389/fmolb.2020.603740
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The gut microbiome is of utmost importance to human health. While a healthy microbiome can be represented by a variety of structures, its functional capacity appears to be more important. Gene content of the community can be assessed by "shotgun" metagenomics, but this approach is still too expensive. High-throughput amplicon-based surveys are a method of choice for large-scale surveys of links between microbiome, diseases, and diet, but the algorithms for predicting functional composition need to be improved to achieve good precision. Here we show how feature engineering based on microbial phenotypes, an advanced method for functional prediction from 16S rRNA sequencing data, improves identification of alterations of the gut microbiome linked to the disease. We processed a large collection of published gut microbial datasets of inflammatory bowel disease (IBD) patients to derive their community phenotype indices (CPI)-high-precision semiquantitative profiles aggregating metabolic potential of the community members based on genome-wide metabolic reconstructions. The list of selected metabolic functions included metabolism of short-chain fatty acids, vitamins, and carbohydrates. The machine-learning approach based on microbial phenotypes allows us to distinguish the microbiome profiles of healthy controls from patients with Crohn's disease and from ones with ulcerative colitis. The classifiers were comparable in quality to conventional taxonomy-based classifiers but provided new findings giving insights into possible mechanisms of pathogenesis. Feature-wise partial dependence plot (PDP) analysis of contribution to the classification result revealed a diversity of patterns. These observations suggest a constructive basis for defining functional homeostasis of the healthy human gut microbiome. The developed features are promising interpretable candidate biomarkers for assessing microbiome contribution to disease risk for the purposes of personalized medicine and clinical trials.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Gut Microbiome and Inflammatory Bowel Diseases
    Shan, Yue
    Lee, Mirae
    Chang, Eugene B.
    ANNUAL REVIEW OF MEDICINE, 2022, 73 : 455 - 468
  • [2] Gut Microbiome Metabolic Phenotypes are Biomarkers for Severity of Myocardial Infarction
    Baker, John F.
    Lam, Vy
    Su, Jidong
    Tweddell, James S.
    Salzman, Nita H.
    Gross, Garrett J.
    CIRCULATION, 2013, 128 (22)
  • [3] Restoring the gut microbiome for the treatment of inflammatory bowel diseases
    Jessica R Allegretti
    Matthew J Hamilton
    World Journal of Gastroenterology, 2014, (13) : 3468 - 3474
  • [4] Restoring the gut microbiome for the treatment of inflammatory bowel diseases
    Allegretti, Jessica R.
    Hamilton, Matthew J.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (13) : 3468 - 3474
  • [5] Intestinal microbiome in chronic diseases. Relevance of gut bacteria in inflammatory bowel diseases and metabolic disorders
    Schueppel, V.
    Haller, D.
    DIABETOLOGE, 2016, 12 (06): : 420 - 427
  • [6] Gut microbiome structure and metabolic activity in inflammatory bowel disease
    Eric A. Franzosa
    Alexandra Sirota-Madi
    Julian Avila-Pacheco
    Nadine Fornelos
    Henry J. Haiser
    Stefan Reinker
    Tommi Vatanen
    A. Brantley Hall
    Himel Mallick
    Lauren J. McIver
    Jenny S. Sauk
    Robin G. Wilson
    Betsy W. Stevens
    Justin M. Scott
    Kerry Pierce
    Amy A. Deik
    Kevin Bullock
    Floris Imhann
    Jeffrey A. Porter
    Alexandra Zhernakova
    Jingyuan Fu
    Rinse K. Weersma
    Cisca Wijmenga
    Clary B. Clish
    Hera Vlamakis
    Curtis Huttenhower
    Ramnik J. Xavier
    Nature Microbiology, 2019, 4 : 293 - 305
  • [7] Gut microbiome structure and metabolic activity in inflammatory bowel disease
    Franzosa, Eric A.
    Sirota-Madi, Alexandra
    Avila-Pacheco, Julian
    Fornelos, Nadine
    Haiser, Henryj
    Reinker, Stefan
    Vatanen, Tommi
    Hall, A. Brantley
    Mallick, Himel
    Mclver, Lauren J.
    Sauk, Jenny S.
    Wilson, Robin G.
    Stevens, Betsy W.
    Scott, Justin M.
    Pierce, Kerry
    Deik, Amy A.
    Bullock, Kevin
    Imhann, Floris
    Porter, Jeffrey A.
    Zhernakova, Alexandra
    Fu, Jingyuan
    Weersma, Rinse K.
    Wijmenga, Cisca
    Clish, Clary B.
    Vlamakis, Hera
    Huttenhower, Curtis
    Xavier, Ramnik J.
    NATURE MICROBIOLOGY, 2019, 4 (02) : 293 - 305
  • [8] Role of the gut microbiome in the pathogenesis and treatment of inflammatory bowel diseases
    Kempski, Jan
    Huber, Samuel
    INNERE MEDIZIN, 2022, 63 (10): : 1022 - 1027
  • [9] The Gut Microbiome in Inflammatory Bowel Diseases: Diagnostic and Therapeutic Implications
    Aden, Konrad
    Reindl, Wolfgang
    VISCERAL MEDICINE, 2019, 35 (06) : 332 - 336
  • [10] The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases
    Vidal-Gallardo, Andrea
    Benitez, Juan E. Mendez
    Rios, Leticia Flores
    Meza, Luis F. Ochoa
    Perez, Rodrigo A. Mata
    Romero, Edgar Martinez
    Beltran, Andres M. Vargas
    Hernandez, Jose L. Beltran
    Banegas, Douglas
    Perez, Brenda
    Ramirez, Marily Martinez
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (02)