Mining Raw Gene Expression Microarray Data for Analyzing Synchronous and Metachronous Liver Metastatic Lesions from Colorectal Cancer

被引:0
|
作者
Wang, Hongfei [1 ]
Lv, Xiadong [1 ]
机构
[1] China Ship Dev & Design Ctr, Wuhan 430064, Peoples R China
来源
2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016) | 2016年
关键词
Gene expression; Microarray; Data mining; Low-level preprocessing; Quality assessment; Filtering; Multiple testing; Taxonomic clustering; DATA QUALITY ACT; CLASSIFICATION; MODELS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gene expression microarray has become a major source for producing high-throughput experiment data. Data mining has been widely applied to dissect the genetic basis of complex diseases. Mining raw, probe-level data leads to a comprehensive understanding of the overall data set, which is especially useful when the goals of the research are different from the original data producer or contributor. Starting exploration from raw data ensures the integrity of original data from being compromized, thus usually yielding reasonable instinct towards choosing the precise algorithms or techniques for further analysis. In this paper, we present steps towards mining raw microarray data. As a case study of our approach, a public data set related to synchronous and metachronous liver metastatic lesions from colorectal cancer is then used, starting from scratch. The result is verified by previous literature, with more insightful findings discovered.
引用
收藏
页码:1826 / 1831
页数:6
相关论文
共 15 条
  • [1] Data mining for gene expression profiles from DNA, microarray
    Cho, SB
    Won, HH
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) : 593 - 608
  • [2] Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis
    Kim, Ji-Young
    Yoon, Seokjoo
    Park, Han-Jin
    Kim, Yong-Bum
    Cho, Jae Woo
    Koh, Woo Suk
    Lee, Michael
    TOXICOLOGICAL RESEARCH, 2007, 23 (01) : 55 - 63
  • [3] A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification
    Peng, Yanxiong
    Li, Wenyuan
    Liu, Ying
    CANCER INFORMATICS, 2006, 2 : 301 - 311
  • [4] Mining Fuzzy Association Rules from microarray gene expression data for leukemia classification
    He, Yuanchen
    Tang, Yuchun
    Zhang, Yan-Qing
    Sunderraman, Rajshekhar
    2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 461 - +
  • [5] Informative gene discovery for cancer classification from microarray expression data
    Ng, M
    Chan, LW
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 393 - 398
  • [6] Lung cancer prediction from microarray data by gene expression programming
    Azzawi, Hasseeb
    Hou, Jingyu
    Xiang, Yong
    Alanni, Russul
    IET SYSTEMS BIOLOGY, 2016, 10 (05) : 168 - 178
  • [7] Long noncoding RNA expression profile analysis of colorectal cancer and metastatic lymph node based on microarray data
    Yang, Peng
    Xu, Zi-Peng
    Chen, Tao
    He, Zhen-Yu
    ONCOTARGETS AND THERAPY, 2016, 9 : 2465 - 2478
  • [8] Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium
    Schurmann, Claudia
    Heim, Katharina
    Schillert, Arne
    Blankenberg, Stefan
    Carstensen, Maren
    Doerr, Marcus
    Endlich, Karlhans
    Felix, Stephan B.
    Gieger, Christian
    Grallert, Harald
    Herder, Christian
    Hoffmann, Wolfgang
    Homuth, Georg
    Illig, Thomas
    Kruppa, Jochen
    Meitinger, Thomas
    Mueller, Christian
    Nauck, Matthias
    Peters, Annette
    Rettig, Rainer
    Roden, Michael
    Strauch, Konstantin
    Voelker, Uwe
    Voelzke, Henry
    Wahl, Simone
    Wallaschofski, Henri
    Wild, Philipp S.
    Zeller, Tanja
    Teumer, Alexander
    Prokisch, Holger
    Ziegler, Andreas
    PLOS ONE, 2012, 7 (12):
  • [9] A hierarchical clustering approach for colorectal cancer molecular subtypes identification from gene expression data
    Raghav, Shivangi
    Suri, Aastha
    Kumar, Deepika
    Aakansha, Aakansha
    Rathore, Muskan
    Roy, Sudipta
    INTELLIGENT MEDICINE, 2024, 4 (01): : 43 - 51
  • [10] Global gene expression profiling of dimethylnitrosamine-induced liver fibrosis: From pathological and biochemical data to microarray analysis
    Su, Li-Jen
    Hsu, Shih-Lan
    Yang, Jyh-Shyue
    Tseng, Huei-Hun
    Huang, Shiu-Feng
    Huang, Chi-Ying F.
    GENE EXPRESSION, 2006, 13 (02): : 107 - 132