The ARHD model

被引:10
作者
Mas, Andre
Pumo, Besnik
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
[2] INH Angers, Unite Stat, UMR A462 SAGAH, Angers, France
关键词
ARHD model; functional data; continuous-time prediction; Wong process; ENSO Sobolev space;
D O I
10.1016/j.jspi.2005.12.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce and study a new model for functional data. The ARHD is an autoregressive model in which the first order derivative of the random curves appears explicitly. Convergent estimates are obtained through an original double penalization method. The prediction method is applied to a real set of data already studied in the literature. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 553
页数:16
相关论文
共 31 条
  • [1] [Anonymous], 2003, PURE APPL MAT AMST
  • [2] [Anonymous], 1988, LINEAR OPERATORS
  • [3] [Anonymous], CLASSES LINEAR OPERA
  • [4] [Anonymous], CLASSES LINEAR OPERA
  • [5] Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes
    Antoniadis, A
    Sapatinas, T
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) : 133 - 158
  • [6] Autoregressive forecasting of some functional climatic variations
    Besse, PC
    Cardot, H
    Stephenson, DB
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (04) : 673 - 687
  • [7] Spline approximation of the forecast of a first-order autoregressive functional process
    Besse, PC
    Cardot, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (04): : 467 - 487
  • [8] Optimal sampling for density estimation in continuous time
    Blanke, D
    Pumo, B
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (01) : 1 - 23
  • [9] BOSQ D, 1991, NATO ADV SCI I C-MAT, V335, P509
  • [10] Bosq D., 2000, LECT NOTES STAT, VVolume 149, P283, DOI 10.1007/978-1-4612-1154-9