Geometric measure of entanglement for symmetric states

被引:106
作者
Huebener, Robert [1 ]
Kleinmann, Matthias [2 ]
Wei, Tzu-Chieh [3 ,4 ]
Gonzalez-Guillen, Carlos [5 ,6 ]
Guehne, Otfried [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[5] Univ Complutense Madrid, Depto Anal Matemat, E-28040 Madrid, Spain
[6] Univ Complutense Madrid, IMI, E-28040 Madrid, Spain
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevA.80.032324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Is the closest product state to a symmetric entangled multiparticle state also symmetric? This question has appeared in the recent literature concerning the geometric measure of entanglement. First, we show that a positive answer can be derived from results concerning symmetric multilinear forms and homogeneous polynomials, implying that the closest product state can be chosen to be symmetric. We then prove the stronger result that the closest product state to any symmetric multiparticle quantum state is necessarily symmetric. Moreover, we discuss generalizations of our result and the case of translationally invariant states, which can occur in spin models.
引用
收藏
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 1954, MATH SCAND
[2]  
BANACH S, 1933, ANN POL MATH, V12, P116
[3]   Are Random Pure States Useful for Quantum Computation? [J].
Bremner, Michael J. ;
Mora, Caterina ;
Winter, Andreas .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[4]  
Defant A., 1993, North Holland Math. Stud., V176
[5]  
Dineen S., 1999, COMPLEX ANAL INFINIT
[6]   Restricted numerical range: A versatile tool in the theory of quantum information [J].
Gawron, Piotr ;
Puchala, Zbigniew ;
Miszczak, Jaroslaw Adam ;
Skowronek, Lukasz ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[7]   Most Quantum States Are Too Entangled To Be Useful As Computational Resources [J].
Gross, D. ;
Flammia, S. T. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[8]  
Grothendieck A., 1953, Bol. Soc. Mat. Sao Paulo, V8, P1
[9]   Multiparticle entanglement under the influence of decoherence [J].
Guehne, O. ;
Bodoky, F. ;
Blaauboer, M. .
PHYSICAL REVIEW A, 2008, 78 (06)
[10]   Entanglement detection [J].
Guehne, Otfried ;
Toth, Geza .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 474 (1-6) :1-75