A self-assembled 3D urchin-like Ti0.8Sn0.2O2-rGO hybrid nanostructure as an anode material for high-rate and long cycle life Li-ion batteries

被引:33
作者
Dong, Yutao [1 ]
Li, Dan [1 ]
Gao, Chengwei [1 ]
Liu, Yushan [1 ]
Zhang, Jianmin [1 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, 100 Sci Rd, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION; HIGH-CAPACITY; GRAPHENE OXIDE; NEGATIVE ELECTRODE; FACILE SYNTHESIS; TIO2; NANOTUBES; SOLID-SOLUTION; STORAGE; NANOPARTICLES; NANOFIBERS;
D O I
10.1039/c7ta01211j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The controllable synthesis of electrode materials with unique nanostructures, high specific surface areas, and excellent electrochemical performance is crucially demanded for lithium-ion power batteries. In this paper, a 3D urchin-like Ti0.8Sn0.2O2-rGO hybrid nanostructure was successfully fabricated by a one-step hydrothermal process based on the coordination principle and molecular self-assembly theory. This novel graphene-supported Ti0.8Sn0.2O2 solid solution material efficiently combined the mechanical stability of TiO2 and high capacity of SnO2, leading to excellent electrochemical activity and superior cycling stability. High specific capacities of about 430 mA h g(-1) at a current density of 0.5 A g(-1) and 400 mA h g(-1) after 500 cycles at 1 A g(-1) with an efficiency of nearly 100% were achieved. This strategy could be applied to develop novel structures as electrode materials with facile synthesis, low cost, and high performance.
引用
收藏
页码:8087 / 8094
页数:8
相关论文
共 69 条
[1]   One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance [J].
Bai, Xue ;
Li, Tao ;
Qi, Yong-Xin ;
Wang, Yan-Xiang ;
Yin, Long-Wei ;
Li, Hui ;
Lun, Ning ;
Bai, Yu-Jun .
ELECTROCHIMICA ACTA, 2016, 187 :389-396
[2]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[3]   Porous TiO2 urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution [J].
Cai, Yi ;
Wang, Hong-En ;
Huang, Shao-Zhuan ;
Yuen, Muk Fung ;
Cai, Heng-Hui ;
Wang, Chao ;
Yu, Yong ;
Li, Yu ;
Zhang, Wen-Jun ;
Su, Bao-Lian .
ELECTROCHIMICA ACTA, 2016, 210 :206-214
[4]   (Sn-Ti)O2 nanocomposites for high-capacity and high-rate lithium-ion storage [J].
Chang, Chia-Chin ;
Chen, Yu-Chun ;
Huang, Chun-Wei ;
Su, Yu Hsiu ;
Hu, Chi-Chang .
ELECTROCHIMICA ACTA, 2013, 99 :69-75
[5]   SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries [J].
Chen, Jun Song ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9912-9924
[6]   TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J].
Chen, Jun Song ;
Luan, Deyan ;
Li, Chang Ming ;
Boey, Freddy Yin Chiang ;
Qiao, Shizhang ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2010, 46 (43) :8252-8254
[7]   Rutile-type (Ti,Sn)O2 nanorods as efficient anode materials toward its lithium storage capabilities [J].
Chen, Yu-Chun ;
Hung, Tai-Feng ;
Hu, Chih-Wei ;
Chiang, Ching-Yu ;
Huang, Chun-Wei ;
Su, Hui-Chia ;
Liu, Ru-Shi ;
Lee, Chih-Hao ;
Chang, Chia-Chin .
NANOSCALE, 2013, 5 (06) :2254-2258
[8]   Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode [J].
Cheng, Jianli ;
Wang, Bin ;
Xin, Huolin L. ;
Kim, Chunjoong ;
Nie, Fude ;
Li, Xiaodong ;
Yang, Guangcheng ;
Huang, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2701-2707
[9]   The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review [J].
Deng, Yuanfu ;
Fang, Chengcheng ;
Chen, Guohua .
JOURNAL OF POWER SOURCES, 2016, 304 :81-101
[10]   One-step fabrication of SnxTi1-xO2 rutile-type core-shell microspheres and their electrochemical properties [J].
Dong, Yutao ;
Wang, Xinjun ;
Chen, Junli ;
Chai, Fenglan ;
Liu, Xinqi .
CRYSTAL RESEARCH AND TECHNOLOGY, 2013, 48 (08) :538-545