Toward a Global Genomic Epidemiology of Meningococcal Disease

被引:15
作者
Retchless, Adam C. [1 ]
Fox, LeAnne M. [1 ]
Maiden, Martin C. J. [4 ]
Smith, Vincent [5 ]
Harrison, Lee H. [2 ,3 ]
Glennie, Linda [5 ]
Harrison, Odile B. [4 ]
Wang, Xin [1 ]
机构
[1] Ctr Dis Control & Prevent, Div Bacterial Dis, Atlanta, GA USA
[2] Univ Pittsburgh, Infect Dis Epidemiol Res Unit, Pittsburgh, PA USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Int Hlth, Baltimore, MD USA
[4] Univ Oxford, Dept Zool, Oxford, England
[5] Meningitis Res Fdn, Bristol, Avon, England
基金
比尔及梅琳达.盖茨基金会;
关键词
Meningitis belt; Neisseria meningitidis; next generation sequencing; whole genome sequencing; genomics; metagenomics; surveillance; outbreaks; epidemics; molecular epidemiology; MENINGITIDIS SEROGROUP C; SEQUENCE TYPE; ANTIMICROBIAL RESISTANCE; SURVEILLANCE; SUSCEPTIBILITY; RESOLUTION; OUTBREAK; BELT;
D O I
10.1093/infdis/jiz279
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Whole-genome sequencing (WGS) is invaluable for studying the epidemiology of meningococcal disease. Here we provide a perspective on the use of WGS for meningococcal molecular surveillance and outbreak investigation, where it helps to characterize pathogens, predict pathogen traits, identify emerging pathogens, and investigate pathogen transmission during outbreaks. Standardization of WGS workflows has facilitated their implementation by clinical and public health laboratories (PHLs), but further development is required for metagenomic shotgun sequencing and targeted sequencing to be widely available for culture-free characterization of bacterial meningitis pathogens. Internet-accessible servers are being established to support bioinformatics analysis, data management, and data sharing among PHLs. However, establishing WGS capacity requires investments in laboratory infrastructure and technical knowledge, which is particularly challenging in resource-limited regions, including the African meningitis belt. Strategic WGS implementation is necessary to monitor the molecular epidemiology of meningococcal disease in these regions and construct a global view of meningococcal disease epidemiology.
引用
收藏
页码:S266 / S273
页数:8
相关论文
共 52 条
[1]   Outer membrane vesicles extracted from Neisseria meningitidis serogroup X for prevention of meningococcal disease in Africa [J].
Acevedo, Reinaldo ;
Zayas, Caridad ;
Norheim, Gunnstein ;
Fernandez, Sonsire ;
Cedre, Barbara ;
Aranguren, Yisabel ;
Cuello, Maribel ;
Rodriguez, Yaimara ;
Gonzalez, Humberto ;
Mandiarote, Aleida ;
Perez, Marylin ;
Hernandez, Maritza ;
Hernandez-Cedeno, Mabel ;
Gonzalez, Domingo ;
Brorson, Sverre-Henning ;
Rosenqvist, Einar ;
Naess, Lisbeth ;
Tunheim, Gro ;
Cardoso, Daniel ;
Garcia, Luis .
PHARMACOLOGICAL RESEARCH, 2017, 121 :194-201
[2]   Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design [J].
Andreae, Clio A. ;
Sessions, Richard B. ;
Virji, Mumtaz ;
Hill, Darryl. J. .
PLOS ONE, 2018, 13 (03)
[3]  
[Anonymous], 2000, Wkly Epidemiol Rec, V75, P306
[4]   The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection [J].
Borrow, Ray ;
Alarcon, Pedro ;
Carlos, Josefina ;
Caugant, Dominique A. ;
Christensen, Hannah ;
Debbag, Roberto ;
De Wals, Philippe ;
Echaniz-Aviles, Gabriela ;
Findlow, Jamie ;
Head, Chris ;
Holt, Daphne ;
Kamiya, Hajime ;
Saha, Samir K. ;
Sidorenko, Sergey ;
Taha, Muhamed-Kheir ;
Trotter, Caroline ;
Vazquez Moreno, Julio A. ;
von Gottberg, Anne ;
Safadi, Marco A. P. .
EXPERT REVIEW OF VACCINES, 2017, 16 (04) :313-328
[5]   Outbreak of Neisseria meningitidis serogroup C outside the meningitis belt-Liberia, 2017: an epidemiological and laboratory investigation [J].
Bozio, Catherine H. ;
Vuong, Jeni ;
Dokubo, E. Kainne ;
Fallah, Mosoka P. ;
McNamara, Lucy A. ;
Potts, Caelin C. ;
Doedeh, John ;
Gbanya, Miatta ;
Retchless, Adam C. ;
Patel, Jaymin C. ;
Clark, Thomas A. ;
Kohar, Henry ;
Nagbe, Thomas ;
Clement, Peter ;
Katawera, Victoria ;
Mahmoud, Nuha ;
Djingarey, Harouna M. ;
Perrocheau, Anne ;
Naidoo, Dhamari ;
Stone, Mardia ;
George, Roseline N. ;
Williams, Desmond ;
Gasasira, Alex ;
Nyenswah, Tolbert ;
Wang, Xin ;
Fox, LeAnne M. .
LANCET INFECTIOUS DISEASES, 2018, 18 (12) :1360-1367
[6]   A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes [J].
Bratcher, Holly B. ;
Corton, Craig ;
Jolley, Keith A. ;
Parkhill, Julian ;
Maiden, Martin C. J. .
BMC GENOMICS, 2014, 15
[7]   Meningococcal vaccine antigen diversity in global databases [J].
Brehony, C. ;
Hill, D. M. ;
Lucidarme, J. ;
Borrow, R. ;
Maiden, M. C. .
EUROSURVEILLANCE, 2015, 20 (49) :28-36
[8]   Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa [J].
Brynildsrud, Ola Bronstad ;
Eldholm, Vegard ;
Bohlin, Jon ;
Uadiale, Kennedy ;
Obaro, Stephen ;
Caugant, Dominique A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (21) :5510-5515
[9]   Pooled-sera hSBA titres predict individual seroprotection in infants and toddlers vaccinated with 4CMenB [J].
Budroni, Sonia ;
Kleinschmidt, Annett ;
Boucher, Philip ;
Medini, Duccio .
VACCINE, 2016, 34 (23) :2579-2584
[10]   Four-month outbreak of invasive meningococcal disease caused by a rare serogroup B strain, identified through the use of molecular PorA subtyping, England, 2013 [J].
Chatt, C. ;
Gajraj, R. ;
Hawker, J. ;
Neal, K. ;
Tahir, M. ;
Lawrence, M. ;
Gray, S. J. ;
Lucidarme, J. ;
Carr, A. D. ;
Clark, S. A. ;
Fowler, T. .
EUROSURVEILLANCE, 2014, 19 (44) :25-31