Likelihood analysis of non-Gaussian measurement time series

被引:334
作者
Shephard, N [1 ]
Pitt, MK [1 ]
机构
[1] UNIV OXFORD, DEPT STAT, OXFORD OX1 3TG, ENGLAND
基金
英国经济与社会研究理事会;
关键词
blocking; exponential family; importance sampling; Markov chain Monte Carlo; simulation smoother; stochastic volatility;
D O I
10.1093/biomet/84.3.653
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we provide methods for estimating non-Gaussian time series models. These techniques rely on Markov chain Monte Carlo to carry out simulation smoothing and Bayesian posterior analysis of parameters, and on importance sampling to estimate the likelihood function for classical inference. The time series structure of the models is used to ensure that our simulation algorithms are efficient.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 36 条
[1]  
[Anonymous], [No title captured], DOI DOI 10.2307/2328253
[2]  
[Anonymous], 1995, Markov Chain Monte Carlo in Practice
[3]  
[Anonymous], OX OBJECT ORIENTED M
[4]   A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING [J].
CARLIN, BP ;
POLSON, NG ;
STOFFER, DS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) :493-500
[5]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[6]   Markov chain Monte Carlo in conditionally Gaussian state space models [J].
Carter, CK ;
Kohn, R .
BIOMETRIKA, 1996, 83 (03) :589-601
[7]   MONTE-CARLO EM ESTIMATION FOR TIME-SERIES MODELS INVOLVING COUNTS [J].
CHAN, KS ;
LEDOLTER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :242-252
[8]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[9]   ACCELERATED GAUSSIAN IMPORTANCE SAMPLER WITH APPLICATION TO DYNAMIC LATENT VARIABLE MODELS [J].
DANIELSSON, J ;
RICHARD, JF .
JOURNAL OF APPLIED ECONOMETRICS, 1993, 8 :S153-S173
[10]   SMOOTHING AND INTERPOLATION WITH THE STATE-SPACE MODEL [J].
DEJONG, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1085-1088