SPREADING SPEEDS AND TRANSITION FRONTS OF LATTICE KPP EQUATIONS IN TIME HETEROGENEOUS MEDIA

被引:26
作者
Cao, Feng [1 ]
Shen, Wenxian [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
Spreading speed intervals; transition fronts; lattice KPP equations; time heterogeneous media; critical fronts; REACTION-DIFFUSION EQUATIONS; GENERALIZED PROPAGATING SPEEDS; NONLOCAL MONOSTABLE EQUATIONS; SPACE PERIODIC HABITATS; TRAVELING-WAVES; VARIATIONAL PRINCIPLE; UNIQUENESS; EXISTENCE; MODELS; STABILITY;
D O I
10.3934/dcds.2017202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current paper is devoted to the study of spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. We first prove the existence, uniqueness, and stability of spatially homogeneous entire positive solutions. Next, we establish lower and upper bounds of the (generalized) spreading speed intervals. Then, by constructing appropriate sub-solutions and super-solutions, we show the existence and continuity of transition fronts with given front position functions. Also, we prove the existence of some kind of critical front.
引用
收藏
页码:4697 / 4727
页数:31
相关论文
共 57 条
[1]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[4]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[5]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[6]   Spreading speeds for one-dimensional monostable reaction-diffusion equations [J].
Berestycki, Henri ;
Nadin, Gregoire .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
[7]   Generalized transition waves and their properties [J].
Berestycki, Henri ;
Hamel, Francois .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) :592-648
[8]   THE SPEED OF PROPAGATION FOR KPP TYPE PROBLEMS. II: GENERAL DOMAINS [J].
Berestycki, Henri ;
Hamel, Francois ;
Nadirashvili, Nikolai .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) :1-34
[9]   Asymptotic spreading in heterogeneous diffusive excitable media [J].
Berestycki, Henri ;
Hamel, Francois ;
Nadin, Gregoire .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2146-2189
[10]   Uniqueness of travelling waves for nonlocal monostable equations [J].
Carr, J ;
Chmaj, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2433-2439