Qualitative Behaviour of Generalised Beddington Model

被引:19
作者
Din, Qamar [1 ]
Khan, Muhammad Adil [2 ]
Saeed, Umer [3 ]
机构
[1] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Pakistan
[2] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[3] Natl Univ Sci & Technol, NUST Inst Civil Engn, Islamabad, Pakistan
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 02期
关键词
Global Behaviour; Local Stability; Predator-Prey Model; Rate of Convergence; Steady States; PREDATOR-PREY SYSTEM; FOOD-CHAIN SYSTEM; DIFFERENCE-EQUATIONS; STABILITY ANALYSIS; MULTIPLE DELAYS; DISCRETE; DYNAMICS; BIFURCATIONS;
D O I
10.1515/zna-2015-0410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work is related to the dynamics of a discrete-time density-dependent generalised Beddington model. Moreover, we investigate the existence and uniqueness of positive equilibrium point, boundedness character, local and global behaviours of unique positive equilibrium point, and the rate of convergence of positive solutions that converge to the unique positive equilibrium point of this model. Numerical examples are provided to illustrate theoretical discussion.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 29 条
[1]  
Allen Linda J. S., 2006, INTRO MATH BIOL
[2]  
[Anonymous], 2013, Mathematical Biology
[3]  
[Anonymous], 2014, NETW BIOL
[4]   Bifurcations and dynamics of a discrete predator-prey system [J].
Asheghi, Rasoul .
JOURNAL OF BIOLOGICAL DYNAMICS, 2014, 8 (01) :161-186
[5]   DYNAMIC COMPLEXITY IN PREDATOR-PREY MODELS FRAMED IN DIFFERENCE EQUATIONS [J].
BEDDINGTON, JR ;
FREE, CA ;
LAWTON, JH .
NATURE, 1975, 255 (5503) :58-60
[6]  
Brauer F., 2012, MATH MODELS POPULATI, V2
[7]   Stability Analysis of a System of Exponential Difference Equations [J].
Din, Q. ;
Khan, K. A. ;
Nosheen, A. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
[8]  
Din Q., 2014, Computational Ecology and Software, V4, P89
[9]   Behavior of a Competitive System of Second-Order Difference Equations [J].
Din, Q. ;
Ibrahim, T. F. ;
Khan, K. A. .
SCIENTIFIC WORLD JOURNAL, 2014,
[10]   Global stability of a population model [J].
Din, Q. .
CHAOS SOLITONS & FRACTALS, 2014, 59 :119-128