Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches

被引:26
|
作者
Melchior, Cristiane [1 ]
Zanini, Roselaine Ruviaro [1 ]
Guerra, Renata Rojas [1 ]
Rockenbach, Dinei A. [2 ]
机构
[1] Univ Fed Santa Maria UFSM, Ave Roraima 1000, BR-97105900 Santa Maria, RS, Brazil
[2] Pontifical Catholic Univ Rio Grande Sul PUCRS, Sch Technol, 32nd Bldg,Ave Ipiranga 6681, BR-90619900 Porto Alegre, RS, Brazil
关键词
Fatal work-related accidents; ARIMA; beta ARMA; KARMA; Forecasting; Time series; BETA REGRESSION; NORMALITY; MODELS; STATE; TESTS;
D O I
10.1016/j.ijforecast.2020.09.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
We examine the mortality rates due to occupational accidents of the three states in the southern region of Brazil using the autoregressive integrated moving average (ARIMA), beta autoregressive moving average (beta ARMA), and Kumaraswamy autoregressive moving average (KARMA) models to fit the data sets, considering monthly observations from 2000 to 2017. We compare them to identify the best predictive model for the southern region of Brazil. We also provide descriptive analysis, revealing the victims' vulnerability characteristics and comparing them between the states. A clear increase was seen in female participation in the labor market, but the number of deaths from occupational accidents did not increase by the same proportion. Moreover, the state of Parana stood out for having the highest mortality rate from work-related accidents. The fitted ARIMA and beta ARMA models using a 6-month time frame presented similar accuracy measurements, while KARMA performed the worst. (C) 2020 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 50 条
  • [1] A product quality forecasting using autoregressive moving average
    Bon, AT
    Hamid, NA
    Proceedings of the Second IASTED International Conference on Neural Networks and Computational Intelligence, 2004, : 43 - 47
  • [2] FORECASTING INDONESIA MORTALITY RATE USING BETA AUTOREGRESSIVE MOVING AVERAGE MODEL
    Aththufail, Muhammad Faiz Amir
    Devila, Sindy
    Novkaniza, Fevi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [3] Forecasting Malaysia Bulk Latex Prices Using Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing
    Fu, Mong Cheong
    Suhaila, Jamaludin
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (01): : 70 - 81
  • [4] Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model
    Ribeiro, Tatiane Fontana
    Pena-Ramirez, Fernando A.
    Guerra, Renata Rojas
    Alencar, Airlane P.
    Cordeiro, Gauss M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01)
  • [5] Forecasting with prediction intervals for periodic autoregressive moving average models
    Anderson, Paul L.
    Meerschaert, Mark M.
    Zhang, Kai
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (02) : 187 - 193
  • [6] Bayesian modeling and forecasting of vector autoregressive moving average processes
    Shaarawy, Samir M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (11) : 3795 - 3815
  • [7] Time Series Forecasting of Bitcoin Price Based on Autoregressive Integrated Moving Average and Machine Learning Approaches
    Khedmati, M.
    Seifi, F.
    Azizib, M. J.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (07): : 1293 - 1303
  • [8] Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models
    Salman, Afan Galih
    Kanigoro, Bayu
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 252 - 259
  • [9] Hotspots Forecasting Using Autoregressive Integrated Moving Average (ARIMA) for Detecting Forest Fires
    Slavia, Athaya Putri
    Sutoyo, Edi
    Witarsyah, Deden
    2019 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEM (IOTAIS), 2019, : 92 - 97
  • [10] Environmental Noise Pollution Forecasting using Fuzzy-autoregressive Integrated Moving Average Modelling
    Lah, Muhammad Shukri Che
    Arbaiy, Nureize
    Sapuan, Syahir Ajwad
    Lin, Pei-Chun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 838 - 843