Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods

被引:78
作者
Chen, Yanping [1 ]
Liu, Huan-Wen
Liu, Shang
机构
[1] Xiangtan Univ, Sch Math & Comp Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Inst Computat & Appl Math, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[3] Guangxi Univ Nationalities, Inst Math & Comp Sci, Nanning 530006, Guangxi, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Math & Computat Sci, Changsha 410076, Peoples R China
关键词
semi-linear reaction-diffusion equations; expanded mixed finite element; two-grid methods; Newton iteration; correction; error estimates; superconvergence;
D O I
10.1002/nme.1775
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present two efficient methods of two-grid scheme for the approximation of two-dimensional semilinear reaction-diffusion equations using an expanded mixed finite element method. To linearize the discretized equations, we use two Newton iterations on the fine grid in our methods. Firstly, we solve an original non-linear problem on the coarse grid. Then we use twice Newton iterations on the fine grid in our first method, and while in second method we make a correction on the coarse grid between two Newton iterations on the fine grid. These two-grid ideas are from Xu's work (SIAM J. Sci. Comput. 1994; 15:231-237; SIAM J. Numer Anal. 1996; 33:1759-1777) on standard finite element method. We extend the ideas to the mixed finite element method. Moreover, we obtain the error estimates for two algorithms of two-grid method. It is showed that coarse space can be extremely coarse and we achieve asymptotically optimal approximation as long as the mesh sizes satisfy H=O(h (1/4)) in the first algorithm and H=O(h (1/6)) in second algorithm. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:408 / 422
页数:15
相关论文
共 21 条
[1]   Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences [J].
Arbogast, T ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :828-852
[2]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[3]  
Chen Y., 1994, NAT SCI J XIANGTAN U, V16, P23
[4]   A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations [J].
Chen, YP ;
Huang, YQ ;
Yu, DH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :193-209
[5]   Expanded mixed finite element methods for quasilinear second order elliptic problems, II [J].
Chen, ZX .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (04) :501-520
[6]  
Chen ZX, 1998, ESAIM-MATH MODEL NUM, V32, P479
[7]   A two-grid finite difference scheme for nonlinear parabolic equations [J].
Dawson, CN ;
Wheeler, MF ;
Woodward, CS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :435-452
[8]  
DAWSON CN, 1994, CONT MATH, V180, P191
[9]  
DOUGLAS J, 1983, RAIRO-ANAL NUMER-NUM, V17, P17
[10]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9