Kazhdan-Lusztig polynomials for maximally-clustered hexagon-avoiding permutations

被引:4
|
作者
Jones, Brant C. [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Kazhdan-Lusztig polynomial; Pattern avoidance; 321-hexagon; Freely braided; Maximally clustered; FULLY COMMUTATIVE ELEMENTS; ACYCLIC HEAPS; PIECES;
D O I
10.1016/j.jalgebra.2009.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a nonrecursive description for the bounded admissible sets of masks used by Deodhar's algorithm to calculate the Kazhdan-Lusztig polynomials P-x,P- w(q) of type A, in the case when w is hexagon avoiding and maximally clustered. This yields a combinatorial description of the Kazhdan-Lusztig basis elements of the Hecke algebra associated to such permutations w. The maximally-clustered hexagon-avoiding elements are characterized by avoiding the seven classical permutation patterns {3421, 4312, 4321, 46718235, 46781235. 56718234, 56781234}. We also briefly discuss the application of heaps to permutation pattern characterization. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3459 / 3477
页数:19
相关论文
共 24 条