An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty

被引:35
作者
Behinfaraz, Reza [1 ]
Badamchizadeh, Mohammadali [1 ]
Ghiasi, Amir Rikhtegar [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
关键词
System identification; Fractional-order chaotic system; Recursive least square; Synchronization; PARTICLE SWARM OPTIMIZATION; ACTIVE CONTROL; ATTRACTOR; EQUATIONS;
D O I
10.1016/j.apm.2015.11.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, parameters of a fractional-order chaotic system are identified via a robust recursive error prediction method in presence of uncertainty. A generalized ARX structure has obtained by discretization of a continuous fractional-order differential equation defines the identification model. After identifying parameters of system, we use concept of active control method to synchronize two identified fractional-order chaotic systems. The validity of results are demonstrated through an example and also compared with other method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4468 / 4479
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1997, Chaos. An Introduction to Dynamical Systems
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[4]   Modified projective synchronization of uncertain fractional order hyperchaotic systems [J].
Bai, Jing ;
Yu, Yongguang ;
Wang, Sha ;
Song, Yu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1921-1928
[5]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[6]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[7]  
Daftardar-Gejji V., COMPUT MATH IN PRESS, DOI [10.1016/j.camwa.2009.07.003, DOI 10.1016/J.CAMWA.2009]
[8]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[9]   Synchronization of chaotic fractional Chen system [J].
Deng, WH ;
Li, CP .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) :1645-1648
[10]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52