The year in cardiovascular medicine 2021 digital health and innovation

被引:0
作者
Vardas, Panos E. [1 ,2 ]
Asselbergs, Folkert W. [3 ,4 ,5 ]
van Smeden, Maarten [6 ]
Friedman, Paul [7 ]
机构
[1] Hygeia Hosp Grp, Heart Sect, HHG, 5 Erithrou Stavrou, Athens 15123, Greece
[2] European Heart Agcy, ESC, Brussels, Belgium
[3] Univ Utrecht, Univ Med Ctr Utrecht, Dept Cardiol, Div Heart & Lungs, Utrecht, Netherlands
[4] UCL, Hlth Data Res UK, London, England
[5] UCL, Inst Hlth Informat, London, England
[6] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[7] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
关键词
AI-ECG; AI-wearables; Digital health; Cardiovascular medicine; Big data; Machine learning; ARTIFICIAL-INTELLIGENCE; PHYSICAL-ACTIVITY; RISK; ELECTROCARDIOGRAM; PREDICTION; DYSFUNCTION; DIAGNOSIS; OUTCOMES; MODELS;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This article presents some of the most important developments in the fi eld of digital medicine that have appeared over the last 12 months and are related to cardiovascular medicine. The article consists of three main sections, as fol-lows: (i) artifi cial intelligence-enabled cardiovascular diagnostic tools, techniques, and methodologies, (ii) big data and prognostic models for cardiovascular risk protection, and (iii) wearable devices in cardiovascular risk assessment, cardiovascular disease prevention, diagnosis, and management. To conclude the article, the authors present a brief further prospective on this new domain, highlighting existing gaps that are specifi cally related to artifi cial intelligence technologies, such as explainability, cost-effectiveness, and, of course, the importance of proper regulatory oversight for each clinical implementation.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 61 条
[1]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[2]   Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model [J].
Adedinsewo, Demilade A. ;
Johnson, Patrick W. ;
Douglass, Erika J. ;
Attia, Itzhak Zachi ;
Phillips, Sabrina D. ;
Goswami, Rohan M. ;
Yamani, Mohamad H. ;
Connolly, Heidi M. ;
Rose, Carl H. ;
Sharpe, Emily E. ;
Blauwet, Lori ;
Lopez-Jimenez, Francisco ;
Friedman, Paul A. ;
Carter, Rickey E. ;
Noseworthy, Peter A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04) :586-596
[3]   Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care [J].
Akyea, Ralph K. ;
Qureshi, Nadeem ;
Kai, Joe ;
Weng, Stephen F. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[4]   An Electronically Delivered Patient-Activation Tool for Intensification of Medications for Chronic Heart Failure With Reduced Ejection Fraction The EPIC-HF Trial [J].
Allen, Larry A. ;
Venechuk, Grace ;
McIlvennan, Colleen K. ;
Page, Robert L., II ;
Knoepke, Christopher E. ;
Helmkamp, Laura J. ;
Khazanie, Prateeti ;
Peterson, Pamela N. ;
Pierce, Kenneth ;
Harger, Geoffrey ;
Thompson, Jocelyn S. ;
Dow, Tristan J. ;
Richards, Lance ;
Huang, Janice ;
Strader, James R. ;
Trinkley, Katy E. ;
Kao, David P. ;
Magid, David J. ;
Buttrick, Peter M. ;
Matlock, Daniel D. .
CIRCULATION, 2021, 143 (05) :427-437
[5]   Artificial intelligence in cardiovascular imaging-principles, expectations, and limitations [J].
Antoniades, Charalambos ;
Oikonomou, Evangelos K. .
EUROPEAN HEART JOURNAL, 2024, 45 (15) :1322-1326
[6]   Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series [J].
Attia, Zachi, I ;
Kapa, Suraj ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Friedman, Paul A. .
MAYO CLINIC PROCEEDINGS, 2020, 95 (11) :2464-2466
[7]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[8]   Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance [J].
Augusto, Joao B. ;
Davies, Rhodri H. ;
Bhuva, Anish N. ;
Knott, Kristopher D. ;
Seraphim, Andreas ;
Alfarih, Mashael ;
Lau, Clement ;
Hughes, Rebecca K. ;
Lopes, Luis R. ;
Shiwani, Hunain ;
Treibel, Thomas A. ;
Gerber, Bernhard L. ;
Hamilton-Craig, Christian ;
Ntusi, Ntobeko A. B. ;
Pontone, Gianluca ;
Desai, Milind Y. ;
Greenwood, John P. ;
Swoboda, Peter P. ;
Captur, Gabriella ;
Cavalcante, Joao ;
Bucciarelli-Ducci, Chiara ;
Petersen, Steffen E. ;
Schelbert, Erik ;
Manisty, Charlotte ;
Moon, James C. .
LANCET DIGITAL HEALTH, 2021, 3 (01) :E20-E28
[9]   Day-to-day measurement of physical activity and risk of atrial fibrillation [J].
Bonnesen, Mathias Pinto ;
Frodi, Diana My ;
Haugan, Ketil Jorgen ;
Kronborg, Christian ;
Graff, Claus ;
Hojberg, Soren ;
Kober, Lars ;
Krieger, Derk ;
Brandes, Axel ;
Svendsen, Jesper Hastrup ;
Diederichsen, Soren Zoga .
EUROPEAN HEART JOURNAL, 2021, 42 (38) :3979-3988
[10]   Atrial fibrillation burden and cognitive decline in elderly patients undergoing continuous monitoring [J].
Bonnesen, Mathias Pinto ;
Diederichsen, Soren Zoga ;
Isaksen, Jonas L. ;
Frederiksen, Kristian Steen ;
Hasselbalch, Steen Gregers ;
Haugan, Ketil Jorgen ;
Kronborg, Christian ;
Graff, Claus ;
Hojberg, Soren ;
Kober, Lars ;
Krieger, Derk W. ;
Brandes, Axel ;
Svendsen, Jesper Hastrup .
AMERICAN HEART JOURNAL, 2021, 242 :15-23