Scaling and statistical geometry in passive scalar turbulence

被引:3
作者
Mazzino, Andrea [1 ,2 ]
Muratore-Ginanneschi, Paolo [3 ]
机构
[1] Univ Genoa, Dept Phys, INFN, I-16146 Genoa, Italy
[2] CNISM, I-16146 Genoa, Italy
[3] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
基金
芬兰科学院;
关键词
Navier-Stokes equations; statistics; transport processes; turbulence; ADVECTION; RENORMALIZATION; OPERATORS; MODEL;
D O I
10.1103/PhysRevE.80.025301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the statistics of a turbulent passive scalar at scales larger than the pumping may exhibit multiscaling due to a weaker mechanism than the presence of statistical conservation laws. We develop a general formalism to give explicit predictions for the large scale scaling exponents in the case of the Kraichnan model and discuss their geometric origin at small and large scale.
引用
收藏
页数:4
相关论文
共 31 条
[21]  
GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834
[22]   Passive advection and the degenerate elliptic operators Mn [J].
Hakulinen, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (01) :1-45
[23]   ANOMALOUS SCALING OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
KRAICHNAN, RH .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :1016-1019
[24]   SMALL-SCALE STRUCTURE OF A SCALAR FIELD CONVECTED BY TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1968, 11 (05) :945-+
[25]   Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection [J].
Kupiainen, A. ;
Muratore-Ginanneschi, P. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) :669-724
[26]  
Liddle A. R., 2000, Cosmological Inflation and Large Scale Structure
[27]   RECENT PROGRESS TOWARD A THEORY OF TENSOR OPERATORS IN UNITARY GROUPS [J].
LOUCK, JD .
AMERICAN JOURNAL OF PHYSICS, 1970, 38 (01) :3-&
[28]   Passive scalar turbulence in high dimensions [J].
Mazzino, A ;
Muratore-Ginanneschi, P .
PHYSICAL REVIEW E, 2001, 63 (01)
[29]   Structures and multipoint correlators for turbulent advection: Predictions and experiments [J].
Mydlarski, L ;
Pumir, A ;
Shraiman, BI ;
Siggia, ED ;
Warhaft, Z .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4373-4376
[30]   An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces [J].
Rowe, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47) :10181-10201