DC decomposition of nonconvex polynomials with algebraic techniques

被引:23
作者
Ahmadi, Amir Ali [1 ]
Hall, Georgina [1 ]
机构
[1] Princeton Univ, ORFE, Sherrerd Hall, Princeton, NJ 08540 USA
关键词
Difference of convex programming; Conic relaxations; Polynomial optimization; Algebraic decomposition of polynomials; OPTIMIZATION; CONVEXITY; MINIMIZATION;
D O I
10.1007/s10107-017-1144-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure. We prove, however, that optimizing over the entire set of dcds is NP-hard.
引用
收藏
页码:69 / 94
页数:26
相关论文
共 47 条
[1]  
Ahmadi A. A, 2017, DSOS SDSOS OPT UNPUB
[2]  
Ahmadi A. A, 2014, P 48 ANN C INF SCI S
[3]   A COMPLETE CHARACTERIZATION OF THE GAP BETWEEN CONVEXITY AND SOS-CONVEXITY [J].
Ahmadi, Amir Ali ;
Parrilo, Pablo A. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) :811-833
[4]   NP-hardness of deciding convexity of quartic polynomials and related problems [J].
Ahmadi, Amir Ali ;
Olshevsky, Alex ;
Parrilo, Pablo A. ;
Tsitsiklis, John N. .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :453-476
[5]   A convex polynomial that is not sos-convex [J].
Ahmadi, Amir Ali ;
Parrilo, Pablo A. .
MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) :275-292
[6]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[7]   A New Decomposition Method for Multiuser DC-Programming and Its Applications [J].
Alvarado, Alberth ;
Scutari, Gesualdo ;
Pang, Jong-Shi .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) :2984-2998
[8]  
An LTH, 1997, J GLOBAL OPTIM, V11, P253
[9]  
[Anonymous], 1997, ACTA MATH VIETNAM
[10]  
[Anonymous], 1996, Contemporary Mathematics