Ornstein-Uhlenbeck type processes with non-normal distribution

被引:3
|
作者
Jensen, JL [1 ]
Pedersen, J [1 ]
机构
[1] Aarhus Univ, Inst Math, Dept Theoret Stat, DK-8000 Aarhus C, Denmark
关键词
distribution of increments; equivalent martingale measure; heavy tails; likelihood function; Ornstein-Uhlenbeck process;
D O I
10.1239/jap/1032374460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse a class of diffusion models that (i) allows an explicit expression for the likelihood function of discrete time observation, (ii) allows the possibility of heavy-tailed observations, and (iii) allows an analysis of the tails of the increments. The class simply consists of transformed Ornstein-Uhlenbeck processes and is of relevance for heavy-tailed time series. We also treat the question of the existence of an equivalent martingale measure for the class of models considered.
引用
收藏
页码:389 / 402
页数:14
相关论文
共 50 条
  • [31] Rare-event analysis of modulated Ornstein-Uhlenbeck processes
    Jansen, H. M.
    Mandjes, M.
    De Turck, K.
    Wittevrongel, S.
    PERFORMANCE EVALUATION, 2017, 112 : 1 - 14
  • [32] Almost sure asymptotic for Ornstein-Uhlenbeck processes of Poisson potential
    Xing, Fei
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2091 - 2102
  • [33] Model verification for Levy-driven Ornstein-Uhlenbeck processes
    Abdelrazeq, Ibrahim
    Ivanoff, B. Gail
    Kulik, Rafal
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1029 - 1062
  • [34] Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process
    Mardoukhi, Yousof
    Chechkin, Aleksei
    Metzler, Ralf
    NEW JOURNAL OF PHYSICS, 2020, 22 (07)
  • [35] Short and long memory fractional Ornstein-Uhlenbeck α-stable processes
    Magdziarz, Marcin
    STOCHASTIC MODELS, 2007, 23 (03) : 451 - 473
  • [36] ON THE EXPONENTIAL ERGODICITY OF LEVY-DRIVEN ORNSTEIN-UHLENBECK PROCESSES
    Wang, Jian
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (04) : 990 - 1004
  • [37] Law equivalence of Ornstein-Uhlenbeck processes driven by a Levy process
    Bartosz, Grzegorz
    Kania, Tomasz
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 796 - 804
  • [38] Well-balanced Levy driven Ornstein-Uhlenbeck processes
    Schnurr, Alexander
    Woerner, Jeannette H. C.
    STATISTICS & RISK MODELING, 2011, 28 (04) : 343 - 357
  • [39] THE STATIONARY DISTRIBUTIONS OF TWO CLASSES OF REFLECTED ORNSTEIN-UHLENBECK PROCESSES
    Xing, Xiaoyu
    Zhang, Wei
    Wang, Yongjin
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 709 - 720
  • [40] A remark on exact simulation of tempered stable Ornstein-Uhlenbeck processes
    Arai, Takuji
    Imai, Yuto
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (04) : 1196 - 1198