On the stable discretization of strongly anisotropic phase field models with applications to crystal growth

被引:15
作者
Barrett, John W. [1 ]
Garcke, Harald [2 ]
Nuernberg, Robert [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2013年 / 93卷 / 10-11期
关键词
Phase field models; anisotropy; Allen-Cahn; Cahn-Hilliard; mean curvature flow; surface diffusion; Mullins-Sekerka; finite element approximation; FINITE-ELEMENT APPROXIMATION; CAHN-HILLIARD EQUATION; GEOMETRIC EVOLUTION-EQUATIONS; BOUNDARY MOTION; MEAN-CURVATURE; SHARP; SOLIDIFICATION; SURFACE; LIMIT; LAWS;
D O I
10.1002/zamm.201200147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce unconditionally stable finite element approximations for anisotropic Allen-Cahn and Cahn-Hilliard equations. These equations frequently feature in phase field models that appear in materials science. On introducing the novel fully practical finite element approximations we prove their stability and demonstrate their applicability with some numerical results.
引用
收藏
页码:719 / 732
页数:14
相关论文
共 58 条
  • [1] THERMODYNAMICALLY CONSISTENT, FRAME INDIFFERENT DIFFUSE INTERFACE MODELS FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH DIFFERENT DENSITIES
    Abels, Helmut
    Garcke, Harald
    Gruen, Guenther
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (03)
  • [2] Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation
    Alfaro, Matthieu
    Garcke, Harald
    Hilhorst, Danielle
    Matano, Hiroshi
    Schaetzle, Reiner
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 673 - 706
  • [3] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [4] [Anonymous], 2007, DOMAIN DECOMPOSITION
  • [5] THE VISCOUS CAHN-HILLIARD EQUATION .1. COMPUTATIONS
    BAI, F
    ELLIOTT, CM
    GARDINER, A
    SPENCE, A
    STUART, AM
    [J]. NONLINEARITY, 1995, 8 (02) : 131 - 160
  • [6] Phase field computations for surface diffusion and void electromigration in R-3
    Banas, L'ubomir
    Nuernberg, Robert
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2009, 12 (07) : 319 - 327
  • [7] Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration
    Banas, L'ubomir
    Nurnberg, Robert
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) : 202 - 232
  • [8] A multigrid method for the Cahn-Hilliard equation with obstacle potential
    Banas, L'ubomir
    Nuernberg, Robert
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (02) : 290 - 303
  • [9] Barrett J.W., 2012, STABLE PHASE FIELD A
  • [10] A variational formulation of anisotropic geometric evolution equations in higher dimensions
    Barrett, John W.
    Garcke, Harald
    Nurnberg, Robert
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (01) : 1 - 44