Parameter identification for solid oxide fuel cells using cooperative barebone particle swarm optimization with hybrid learning

被引:45
作者
Jiang, Bo [1 ]
Wang, Ning [1 ]
Wang, Liping [2 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Natl Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Coll Econ & Management, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell (SOFC); Parameter identification; Cooperative coevolution; Particle swarm optimization (PSO); Hybrid learning; DYNAMIC-MODEL; ALGORITHM; SYSTEMS;
D O I
10.1016/j.ijhydene.2013.09.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cell (SOFC) has been widely recognized as one of the most promising fuel cells. The SOFC performance is highly influenced by several parameters associated with the internal multi-physicochemical processes. In this work, the optimal modeling strategy is designed to determine the parameters of SOFC using a simple and efficient barebone particle swarm optimization (BPSO) algorithm. The cooperative coevolution strategy is applied to divide the output voltage function into four subfunctions based on the interdependence among variables. To the nonlinear characteristic of SOFC model, a hybrid learning strategy is proposed for BPSO to ensure a good balance between exploration and exploitation. The experimental results illustrate the effectiveness of the proposed algorithm. The comparisons also indicate that cooperative coevolution strategy and hybrid learning improve the performance of original PSO algorithm, offering better approximation effect and stronger robustness. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 39 条
[1]   An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (09) :3473-3480
[2]   Optimization of PEMFC model parameters with a modified particle swarm optimization [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1258-1265
[3]   Analysis of generalized pattern searches [J].
Audet, C ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :889-903
[4]   Static and dynamic modeling of solid oxide fuel cell using genetic programming [J].
Chakraborty, Uday Kumar .
ENERGY, 2009, 34 (06) :740-751
[5]   Energy and exergy analysis of simple solid-oxide fuel-cell power systems [J].
Chan, SH ;
Low, CF ;
Ding, OL .
JOURNAL OF POWER SOURCES, 2002, 103 (02) :188-200
[6]  
Chen WX, 2010, LECT NOTES COMPUT SC, V6239, P300, DOI 10.1007/978-3-642-15871-1_31
[7]   Automatic clustering using an improved differential evolution algorithm [J].
Das, Swagatam ;
Abraham, Ajith ;
Konar, Amit .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (01) :218-237
[8]   A generalization of the Solis-Wets method [J].
de Carvalho, Miguel .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (03) :633-644
[9]   Solid Oxide Fuel Cell Modeling [J].
Gebregergis, Abraham ;
Pillay, Pragasen ;
Bhattacharyya, Debangsu ;
Rengaswemy, Raghunathan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (01) :139-148
[10]   Gas-diffusion process in a tubular cathode substrate of a SOFC - II: Identification of gas-diffusion process using AC impedance method [J].
Huang, KQ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :H117-H121