Predicting IDH Mutation Status in Low-Grade Gliomas Based on Optimal Radiomic Features Combined with Multi-Sequence Magnetic Resonance Imaging

被引:10
作者
He, Ailing [1 ]
Wang, Peng [2 ]
Zhu, Aihua [3 ]
Liu, Yankui [4 ]
Chen, Jianhuan [5 ]
Liu, Li [1 ]
机构
[1] Jiangnan Univ, Big Data Ctr, Affiliated Hosp, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Dept Radiol, Affiliated Hosp, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Dept Neurosurg, Affiliated Hosp, Wuxi 214122, Peoples R China
[4] Jiangnan Univ, Dept Pathol, Affiliated Hosp, Wuxi 214122, Peoples R China
[5] Jiangnan Univ, Wuxi Sch Med, Lab Genom & Precis Med, Wuxi 214122, Peoples R China
关键词
glioma; multi-sequence MRI; radiomics; IDH; machine learning; CENTRAL-NERVOUS-SYSTEM; MRI; CLASSIFICATION; DIAGNOSIS; TUMORS;
D O I
10.3390/diagnostics12122995
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The IDH somatic mutation status is an important basis for the diagnosis and classification of gliomas. We proposed a "6-Step" general radiomics model to noninvasively predict the IDH mutation status by simultaneously tuning combined multi-sequence MRI and optimizing the full radiomics processing pipeline. Radiomic features (n = 3776) were extracted from multi-sequence MRI (T1, T2, FLAIR, and T1Gd) in low-grade gliomas (LGGs), and a total of 45,360 radiomics pipeline were investigated according to different settings. The predictive ability of the general radiomics model was evaluated with regards to accuracy, stability, and efficiency. Based on numerous experiments, we finally reached an optimal pipeline for classifying IDH mutation status, namely the T2+FLAIR combined multi-sequence with the wavelet image filter, mean data normalization, PCC dimension reduction, RFE feature selection, and SVM classifier. The mean and standard deviation of AUC, accuracy, sensitivity, and specificity were 0.873 +/- 0.05, 0.876 +/- 0.09, 0.875 +/- 0.11, and 0.877 +/- 0.15, respectively. Furthermore, 14 radiomic features that best distinguished the IDH mutation status of the T2+FLAIR multi-sequence were analyzed, and the gray level co-occurrence matrix (GLCM) features were shown to be of high importance. Apart from the promising prediction of the molecular subtypes, this study also provided a general tool for radiomics investigation.
引用
收藏
页数:14
相关论文
共 41 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [3] Bakas Spyridon, 2016, Brainlesion, V9556, P144, DOI [10.1007/978-3-319-30858-6_13, 10.1007/978-3-319-30858-6_1]
  • [4] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157
  • [5] The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study
    Broen, Martinus P. G.
    Smits, Marion
    Wijnenga, Maarten M. J.
    Dubbink, Hendrikus J.
    Anten, Monique H. M. E.
    Schijns, Olaf E. M. G.
    Beckervordersandforth, Jan
    Postma, Alida A.
    van den Bent, Martin J.
    [J]. NEURO-ONCOLOGY, 2018, 20 (10) : 1393 - 1399
  • [6] Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging
    Chang, Ken
    Bai, Harrison X.
    Zhou, Hao
    Su, Chang
    Bi, Wenya Linda
    Agbodza, Ena
    Kavouridis, Vasileios K.
    Senders, Joeky T.
    Boaro, Alessandro
    Beers, Andrew
    Zhang, Biqi
    Capellini, Alexandra
    Liao, Weihua
    Shen, Qin
    Li, Xuejun
    Xiao, Bo
    Cryan, Jane
    Ramkissoon, Shakti
    Ramkissoon, Lori
    Ligon, Keith
    Wen, Patrick Y.
    Bindra, Ranjit S.
    Woo, John
    Arnaout, Omar
    Gerstner, Elizabeth R.
    Zhang, Paul J.
    Rosen, Bruce R.
    Yang, Li
    Huang, Raymond Y.
    Kalpathy-Cramer, Jayashree
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (05) : 1073 - 1081
  • [7] Machine learning to differentiate small round cell malignant tumors and non-small round cell malignant tumors of the nasal and paranasal sinuses using apparent diffusion coefficient values
    Chen, Chen
    Qin, Yuhui
    Chen, Haotian
    Cheng, Junying
    He, Bo
    Wan, Yixuan
    Zhu, Dongyong
    Gao, Fabao
    Zhou, Xiaoyue
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (06) : 3819 - 3829
  • [8] Texture Analysis of Fat-Suppressed T2-Weighted Magnetic Resonance Imaging and Use of Machine Learning to Discriminate Nasal and Paranasal Sinus Small Round Malignant Cell Tumors
    Chen, Chen
    Qin, Yuhui
    Cheng, Junying
    Gao, Fabao
    Zhou, Xiaoyue
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [9] Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics
    Choi, Yoon Seong
    Bae, Sohi
    Chang, Jong Hee
    Kang, Seok-Gu
    Kim, Se Hoon
    Kim, Jinna
    Rim, Tyler Hyungtaek
    Choi, Seung Hong
    Jain, Rajan
    Lee, Seung-Koo
    [J]. NEURO-ONCOLOGY, 2021, 23 (02) : 304 - 313
  • [10] Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction
    Choi, Yoon Seong
    Ahn, Sung Soo
    Chang, Jong Hee
    Kang, Seok-Gu
    Kim, Eui Hyun
    Kim, Se Hoon
    Jain, Rajan
    Lee, Seung-Koo
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (07) : 3834 - 3842