Quantum cohomology of orthogonal Grassmannians

被引:33
作者
Kresch, A
Tamvakis, H
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
关键词
quantum cohomology; Quot schemes; Schubert calculus;
D O I
10.1112/S0010437X03000204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a vector space with a non-degenerate symmetric form and OG be the orthogonal Grassmannian which parametrizes maximal isotropic subspaces in V. We give a presentation for the (small) quantum cohomology ring QH*(OG) and show that its product structure is determined by the ring of (P) over tilde -polynomials. A 'quantum Schubert calculus is formulated, which includes quantum Pieri and Giambelli formulas, as well as algorithms for computing Gromov-Witten invariants. As an application, we show that the table of three-point, genus zero Gromov-Witten invariants for OG coincides with that for a corresponding Lagrangian Grassmannian LG, up to an involution.
引用
收藏
页码:482 / 500
页数:19
相关论文
共 15 条
[1]   Quantum Schubert calculus [J].
Bertram, A .
ADVANCES IN MATHEMATICS, 1997, 128 (02) :289-305
[2]  
Fulton W., 1998, ERGEBNISSE MATH, V2
[3]  
Fulton W., 1997, Proceedings of Symposia in Pure Mathematics, V62, P45
[4]  
GROTHENDIECK A, 1962, SEIANIRE H CARTAN, V13
[5]  
Grothendieck A., 1995, SEMINAIRE BOURBAKI, V6, P249
[6]   PIERI FORMULA FOR SO2N+1/UN AND SPN/UN [J].
HILLER, H ;
BOE, B .
ADVANCES IN MATHEMATICS, 1986, 62 (01) :49-67
[7]   Double Schubert polynomials and degeneracy loci for the classical groups [J].
Kresch, A ;
Tamvakis, H .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (06) :1681-+
[8]  
KRESCH A, IN PRESS J ALGEBRAIC
[9]   Orthogonal divided differences and Schubert polynomials, (P)over-tilde-functions, and vertex operators [J].
Lascoux, A ;
Pragacz, P .
MICHIGAN MATHEMATICAL JOURNAL, 2000, 48 :417-441
[10]  
Li J, 1997, J ALGEBRAIC GEOM, V6, P269