On perturbation of a functional with the mountain pass geometry Applications to the nonlinear Schrodinger-Poisson equations and the nonlinear Klein-Gordon-Maxwell equations

被引:40
作者
Jeong, Wonjeong [1 ]
Seok, Jinmyoung [2 ]
机构
[1] POSTECH, Dept Math, Pohang 790784, Kyungbuk, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
SCALAR FIELD-EQUATIONS; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EXISTENCE; SYSTEM;
D O I
10.1007/s00526-013-0595-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a functional with the mountain-pass geometry and a critical point of mountain-pass type. In this paper, we discuss about the existence of critical points around for functionals perturbed from in a suitable sense. As applications, we show the existence of a solution to the nonlinear Schrodinger-Poisson equations and the nonlinear Klein-Gordon-Maxwell equations with quite general class of nonlinearity.
引用
收藏
页码:649 / 668
页数:20
相关论文
共 28 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[5]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[6]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[7]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[8]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[9]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[10]  
Benci V, 2008, ADV NONLINEAR STUD, V8, P327