Ubiquity of, and geostatistics for, nonstationary increment random fields

被引:2
作者
O'Malley, Daniel [1 ]
Cushman, John H. [1 ,2 ]
机构
[1] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
geostatistics; kriging; nonstationary increments; model selection; FRACTIONAL BROWNIAN-MOTION;
D O I
10.1002/wrcr.20328
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nonstationary random fields such as fractional Brownian motion and fractional Levy motion have been studied extensively in the hydrology literature. On the other hand, random fields that have nonstationary increments have seen little study. A mathematical argument is presented that demonstrates processes with stationary increments are the exception and processes with nonstationary increments are far more abundant. The abundance of nonstationary increment processes has important implications, e.g., in kriging where a translation-invariant variogram implicitly assumes stationarity of the increments. An approach to kriging for processes with nonstationary increments is presented and accompanied by some numerical results.
引用
收藏
页码:4525 / 4529
页数:5
相关论文
共 50 条
  • [1] Equivalence of Gaussian measures for some nonstationary random fields
    Stein, ML
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (01) : 1 - 11
  • [2] Measuring the roughness of random paths by increment ratios
    Bardet, Jean-Marc
    Surgailis, Donatas
    BERNOULLI, 2011, 17 (02) : 749 - 780
  • [3] Analysis of Random Fields Using CompRandFld
    Padon, Simone A.
    Bevilacqua, Moreno
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (09): : 1 - 27
  • [4] Prediction intervals for integrals of Gaussian random fields
    De Oliveira, Victor
    Kone, Bazoumana
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 37 - 51
  • [5] Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield
    Rahimi, Mehran
    Riahi, Mohammad Ali
    JOURNAL OF APPLIED GEOPHYSICS, 2022, 201
  • [6] An Overview of Kriging and Cokriging Predictors for Functional Random Fields
    Giraldo, Ramon
    Leiva, Victor
    Castro, Cecilia
    MATHEMATICS, 2023, 11 (15)
  • [7] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [8] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [9] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [10] A New Type of Conditioning of Stationary Fields and Its Application to the Spectral Simulation Approach in Geostatistics
    Niyaz S. Ismagilov
    Mikhail A. Lifshits
    Andrey A. Yakovlev
    Mathematical Geosciences, 2021, 53 : 597 - 621