New results on condensed Cramer's rule for the general solution to some restricted quaternion matrix equations

被引:13
作者
Song, Guang-Jing [1 ]
Dong, Chang-Zhou [2 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[2] Shijiazhuang Univ Econ, Sch Math & Sci, Shijiazhuang 050031, Peoples R China
关键词
Quaternion matrix; Cramer's rule; Generalized inverse A(T; S)((2)); Determinant; LEAST-SQUARES SOLUTIONS; NORM; REPRESENTATION;
D O I
10.1007/s12190-015-0970-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive some condensed Cramer's rules for the general solution, the least squares solution and the least norm solution to some restricted quaternion matrix equations, respectively. The findings of this paper extend some known results in the literature.
引用
收藏
页码:321 / 341
页数:21
相关论文
共 40 条
[1]  
Adler S., 1994, Quaternionic Quantum Mechanics and Quantum Fields
[2]   Quaternionic determinants [J].
Aslaksen, H .
MATHEMATICAL INTELLIGENCER, 1996, 18 (03) :57-65
[3]   A CRAMER RULE FOR LEAST-NORM SOLUTIONS OF CONSISTENT LINEAR-EQUATIONS [J].
BENISRAEL, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 43 (MAR) :223-226
[4]   On determinantal representation for the generalized inverse A(2)T,S and its applications [J].
Cai, Jing ;
Chen, Guoliang .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (03) :169-182
[5]  
Chen L., 1991, Acta Math. Sin. (N.S., V7, P171, DOI [10.1007/BF02633946, DOI 10.1007/BF02633946]
[6]  
CHEN LX, 1991, SCI CHINA SER A, V34, P528
[7]  
Chen Y.L., 1995, LINEAR MULTILINEAR A, V40, P61
[8]  
Cohen N., 2000, Electron. J. Linear Algebra, V7, P100, DOI [10.13001/1081-3810.1050, DOI 10.13001/1081-3810.1050]
[9]   OBSERVABILITY OF QUATERNIONIC QUANTUM-MECHANICS [J].
DAVIES, AJ ;
MCKELLAR, BHJ .
PHYSICAL REVIEW A, 1992, 46 (07) :3671-3675
[10]  
DYSON FJ, 1972, HELV PHYS ACTA, V45, P289