On generalized zero divisor graph of a poset

被引:11
|
作者
Joshi, Vinayak [1 ]
Waphare, B. N. [1 ]
Pourali, H. Y. [1 ]
机构
[1] Univ Pune, Dept Math, Pune 411007, Maharashtra, India
关键词
Zero divisor graph; Clique number; Chromatic number; r-partite graph; Semi-ideal; Ideal; Prime ideal; Semiprime ideal; IDEALS;
D O I
10.1016/j.dam.2012.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the generalized ideal based zero divisor graph of a poset P, denoted by <(G(I)(P))over cap>. A representation theorem is obtained for generalized zero divisor graphs. It is proved that a graph is complete r-partite with r >= 2 if and only if it is a generalized zero divisor graph of a poset. As a consequence of this result, we prove a form of a Beck's Conjecture for generalized zero divisor graphs of a poset. Further, it is proved that a generalized zero divisor graph <(G({0})(P))over cap> of a section semi-complemented poset P with respect to the ideal (0] is a complete graph. (C) 2013 Elsevier By. All rights reserved.
引用
收藏
页码:1490 / 1495
页数:6
相关论文
共 50 条
  • [21] The Zero-Divisor Graph of a Lattice
    Estaji, Ehsan
    Khashyarmanesh, Kazem
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 1 - 11
  • [22] GENERALIZATIONS OF THE ZERO-DIVISOR GRAPH
    Anderson, David F.
    McClurkin, Grace
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 237 - 262
  • [23] The Zero-Divisor Graph of a Lattice
    E. Estaji
    K. Khashyarmanesh
    Results in Mathematics, 2012, 61 : 1 - 11
  • [24] Weakly Zero Divisor Graph of a Lattice
    Kulal, Vikas
    Khairnar, Anil
    Masalkar, Krishnat
    Kadam, Lata
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (03): : 1167 - 1180
  • [25] On the zero-divisor graph of a ring
    Anderson, David F.
    Badawi, Ayman
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 3073 - 3092
  • [26] Strong resolving graph of a zero-divisor graph
    Nikandish, R.
    Nikmehr, M. J.
    Bakhtyiari, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [27] Strong resolving graph of a zero-divisor graph
    R. Nikandish
    M. J. Nikmehr
    M. Bakhtyiari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [28] A MODULE THEORETIC APPROACH TO ZERO-DIVISOR GRAPH WITH RESPECT TO (FIRST) DUAL
    Baziar, M.
    Momtahan, E.
    Safaeeyan, S.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04): : 861 - 872
  • [29] The radius, diameter and chromatic number of some zero divisor graph
    Omran, Ahmed A.
    Ghazi, Hayder F.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3891 - 3896
  • [30] The Zero-divisor Graph of the Ring of Integers Modulo n
    Pi, Seung Jun
    Kim, Se Hun
    Lim, Jung Wook
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (04): : 591 - 601