Distinct roles of yeast MEC and RAD checkpoint genes in transcriptional induction after DNA damage and implications for function

被引:76
作者
Kiser, GL [1 ]
Weinert, TA [1 ]
机构
[1] UNIV ARIZONA, DEPT MOLEC & CELLULAR BIOL, TUCSON, AZ 85721 USA
关键词
D O I
10.1091/mbc.7.5.703
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In eukaryotic cells, checkpoint genes cause arrest of cell division when DNA is damaged or when DNA replication is blocked. In this study of budding yeast checkpoint genes, we identify and characterize another role for these checkpoint genes after DNA damage-transcriptional induction of genes. We found that three checkpoint genes (of six genes tested) have strong and distinct roles in transcriptional induction in four distinct pathways of regulation (each defined by induction of specific genes). MEC1 mediates the response in three transcriptional pathways, RAD53 mediates two of these pathways, and RAD17 mediates but a single pathway. The three other checkpoint genes (including RAD9) have small (twofold) but significant roles in transcriptional induction in all pathways. One of the pathways that we identify here leads to induction of MEC1 and RAD53 checkpoint genes themselves. This suggests a positive feedback circuit that may increase the cell's ability to respond to DNA damage. We make two primary conclusions from these studies. First, MEC1 appears to be the key regulator because it is required for all responses (both transcriptional and cell cycle arrest), while other genes serve only a subset of these responses. Second, the two types of responses, transcriptional induction and cell cycle arrest, appear distinct because both require MEC1 yet only cell cycle arrest requires RAD9. These and other results were used to formulate a working model of checkpoint gene function that accounts for roles of different checkpoint genes in different responses and after different types of damage. The conclusion that the yeast MEC1 gene is a key regulator also has implications for the role of a putative human homologue, the ATM gene.
引用
收藏
页码:703 / 718
页数:16
相关论文
共 80 条
  • [1] THE SAD1/RAD53 PROTEIN-KINASE CONTROLS MULTIPLE CHECKPOINTS AND DNA DAMAGE-INDUCED TRANSCRIPTION IN YEAST
    ALLEN, JB
    ZHOU, Z
    SIEDE, W
    FRIEDBERG, EC
    ELLEDGE, SJ
    [J]. GENES & DEVELOPMENT, 1994, 8 (20) : 2401 - 2415
  • [2] REGULATION OF P34CDC28 TYROSINE PHOSPHORYLATION IS NOT REQUIRED FOR ENTRY INTO MITOSIS IN SACCHAROMYCES-CEREVISIAE
    AMON, A
    SURANA, U
    MUROFF, I
    NASMYTH, K
    [J]. NATURE, 1992, 355 (6358) : 368 - 371
  • [3] DNA-DAMAGE AND THE DNA-ACTIVATED PROTEIN-KINASE
    ANDERSON, CW
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1993, 18 (11) : 433 - 437
  • [4] Ausubel F., 1990, CURRENT PROTOCOLS MO
  • [5] RADIOSENSITIVITY IN ATAXIA-TELANGIECTASIA - ANOMALIES IN RADIATION-INDUCED CELL-CYCLE DELAY
    BEAMISH, H
    LAVIN, MF
    [J]. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1994, 65 (02) : 175 - 184
  • [6] DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION
    BLUNT, T
    FINNIE, NJ
    TACCIOLI, GE
    SMITH, GCM
    DEMENGEOT, J
    GOTTLIEB, TM
    MIZUTA, R
    VARGHESE, AJ
    ALT, FW
    JEGGO, PA
    JACKSON, SP
    [J]. CELL, 1995, 80 (05) : 813 - 823
  • [7] BOUBNOV NV, 1995, MOL CELL BIOL, V15, P5700
  • [8] A SMALL SEGMENT OF THE MAT-ALPHA-1 TRANSCRIPT PROMOTES MESSENGER-RNA DECAY IN SACCHAROMYCES-CEREVISIAE - A STIMULATORY ROLE FOR RARE CODONS
    CAPONIGRO, G
    MUHLRAD, D
    PARKER, R
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) : 5141 - 5148
  • [9] REGULATION OF RAD54-LACZ AND RAD52-LACZ GENE FUSIONS IN SACCHAROMYCES-CEREVISIAE IN RESPONSE TO DNA DAMAGE
    COLE, GM
    SCHILD, D
    LOVETT, ST
    MORTIMER, RK
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (03) : 1078 - 1084
  • [10] PI-3-KINASE IS A DUAL-SPECIFICITY ENZYME - AUTOREGULATION BY AN INTRINSIC PROTEIN-SERINE KINASE-ACTIVITY
    DHAND, R
    HILES, I
    PANAYOTOU, G
    ROCHE, S
    FRY, MJ
    GOUT, I
    TOTTY, NF
    TRUONG, O
    VICENDO, P
    YONEZAWA, K
    KASUGA, M
    COURTNEIDGE, SA
    WATERFIELD, MD
    [J]. EMBO JOURNAL, 1994, 13 (03) : 522 - 533