Stress-controlled Poisson ratio of a crystalline membrane: Application to graphene

被引:29
作者
Burmistrov, I. S. [1 ,2 ]
Gornyi, I. V. [1 ,3 ,4 ,5 ]
Kachorovskii, V. Yu. [1 ,3 ,4 ,5 ]
Katsnelson, M. I. [6 ]
Los, J. H. [6 ]
Mirlin, A. D. [1 ,3 ,5 ,7 ]
机构
[1] LD Landau Inst Theoret Phys, Kosygina St 2, Moscow 119334, Russia
[2] Natl Res Univ, Higher Sch Econ, Lab Condensed Matter Phys, Moscow 101000, Russia
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[5] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[6] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[7] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
基金
俄罗斯科学基金会;
关键词
POLYMERIZED MEMBRANES; CRUMPLING TRANSITION; PHASE; FLUCTUATIONS; MECHANICS;
D O I
10.1103/PhysRevB.97.125402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate that a key elastic parameter of a suspended crystalline membrane-the Poisson ratio (PR) nu-is a nontrivial function of the applied stress sigma and of the system size L, i. e., nu =nu(L)(sigma). We consider a generic two-dimensional membrane embedded into space of dimensionality 2 + d(c). (The physical situation corresponds to d(c) = 1.) A particularly important application of our results is to freestanding graphene. We find that at a very low stress, when the membrane exhibits linear response, the PR nu(L) (0) decreases with increasing system size L and saturates for L -> infinity at a value which depends on the boundary conditions and is essentially different from the value nu = -1/3 previously predicted by the membrane theory within a self-consistent scaling analysis. By increasing sigma, one drives a sufficiently large membrane (with the length L much larger than the Ginzburg length) into a nonlinear regime characterized by a universal value of PR that depends solely on d(c), in close connection with the critical index eta controlling the renormalization of bending rigidity. This universal nonlinear PR acquires its minimum value nu(min) = -1 in the limit d(c) -> infinity, when eta -> 0. With the further increase of sigma, the PR changes sign and finally saturates at a positive nonuniversal value prescribed by the conventional elasticity theory. We also show that one should distinguish between the absolute and differential PR (nu and nu(diff), respectively). While coinciding in the limits of very low and very high stress, they differ in general: nu not equal nu(diff). In particular, in the nonlinear universal regime, nu(diff) takes a universal value which, similarly to the absolute PR, is a function solely of d(c) (or, equivalently, eta) but is different from the universal value of nu. In the limit of infinite dimensionality of the embedding space, d(c) -> infinity (i. e., eta -> 0), the universal value of nu(diff) tends to -1/3, at variance with the limiting value -1 of nu Finally, we briefly discuss generalization of these results to a disordered membrane.
引用
收藏
页数:19
相关论文
共 76 条
[1]   Thermodynamics of quantum crystalline membranes [J].
Amorim, B. ;
Roldan, R. ;
Cappelluti, E. ;
Fasolino, A. ;
Guinea, F. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2014, 89 (22)
[2]  
[Anonymous], ARXIV180105053
[3]  
[Anonymous], TREATISE MATH THEORY
[4]   FLUCTUATIONS AND LOWER CRITICAL DIMENSIONS OF CRYSTALLINE MEMBRANES [J].
ARONOVITZ, J ;
GOLUBOVIC, L ;
LUBENSKY, TC .
JOURNAL DE PHYSIQUE, 1989, 50 (06) :609-631
[5]   FLUCTUATIONS OF SOLID MEMBRANES [J].
ARONOVITZ, JA ;
LUBENSKY, TC .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2634-2637
[6]   Graphene kirigami [J].
Blees, Melina K. ;
Barnard, Arthur W. ;
Rose, Peter A. ;
Roberts, Samantha P. ;
McGill, Kathryn L. ;
Huang, Pinshane Y. ;
Ruyack, Alexander R. ;
Kevek, Joshua W. ;
Kobrin, Bryce ;
Muller, David A. ;
McEuen, Paul L. .
NATURE, 2015, 524 (7564) :204-+
[7]   Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes [J].
Bowick, M ;
Cacciuto, A ;
Thorleifsson, G ;
Travesset, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :148103/1-148103/4
[8]   The flat phase of crystalline membranes [J].
Bowick, MJ ;
Catterall, SM ;
Falcioni, M ;
Thorleifsson, G ;
Anagnostopoulos, KN .
JOURNAL DE PHYSIQUE I, 1996, 6 (10) :1321-1345
[9]   Thermal fluctuations of free-standing graphene [J].
Braghin, F. L. ;
Hasselmann, N. .
PHYSICAL REVIEW B, 2010, 82 (03)
[10]   Quantum elasticity of graphene: Thermal expansion coefficient and specific heat [J].
Burmistrov, I. S. ;
Gornyi, I. V. ;
Kachorovskii, V. Yu. ;
Katsnelson, M. I. ;
Mirlin, A. D. .
PHYSICAL REVIEW B, 2016, 94 (19)