Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters

被引:54
作者
Ha, Suk-Jin [1 ,2 ]
Galazka, Jonathan M. [3 ]
Oh, Eun Joong [1 ,2 ]
Kordic, Vesna [3 ]
Kim, Heejin [1 ,2 ]
Jin, Yong-Su [1 ,2 ]
Cate, Jamie H. D. [3 ,4 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
Cellobiose; Phosphorylase; beta-glucosidase; Cellodextrin transporter; Thermodynamics; SITE-SATURATION MUTAGENESIS; CLOSTRIDIUM-THERMOCELLUM; CELLULOSIC BIOFUELS; HYDROLYSIS; YEAST; GLUCOSE; ACID; THERMODYNAMICS; PURIFICATION; RESISTANCE;
D O I
10.1016/j.ymben.2012.11.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular beta-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (Delta G degrees = +3.6 kJ mol(-1)). A thermodynamic "push" from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 41 条
[1]   CHARACTERISTICS OF CELLOBIOSE PHOSPHORYLASE [J].
ALEXANDER, J .
JOURNAL OF BACTERIOLOGY, 1961, 81 (06) :903-+
[2]  
ALEXANDER JK, 1968, J BIOL CHEM, V243, P2899
[3]   Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae [J].
Almeida, Joao R. M. ;
Runquist, David ;
Nogue, Violeta Sanchez I. ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
BIOTECHNOLOGY JOURNAL, 2011, 6 (03) :286-299
[4]   Genetic selection for a highly functional cysteine-less membrane protein using site saturation mutagenesis [J].
Arendt, Cassandra S. ;
Ri, Keirei ;
Yates, Phillip A. ;
Ullman, Buddy .
ANALYTICAL BIOCHEMISTRY, 2007, 365 (02) :185-193
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[7]   Cellulosic Biofuels [J].
Carroll, Andrew ;
Somerville, Chris .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :165-182
[8]   Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae [J].
Casey, Elizabeth ;
Sedlak, Miroslav ;
Ho, Nancy W. Y. ;
Mosier, Nathan S. .
FEMS YEAST RESEARCH, 2010, 10 (04) :385-393
[9]   Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase [J].
de Kok, Stefan ;
Yilmaz, Duygu ;
Suir, Erwin ;
Pronk, Jack T. ;
Daran, Jean-Marc ;
van Maris, Antonius J. A. .
METABOLIC ENGINEERING, 2011, 13 (05) :518-526
[10]   Cellodextrin Transport in Yeast for Improved Biofuel Production [J].
Galazka, Jonathan M. ;
Tian, Chaoguang ;
Beeson, William T. ;
Martinez, Bruno ;
Glass, N. Louise ;
Cate, Jamie H. D. .
SCIENCE, 2010, 330 (6000) :84-86