A uniqueness theorem for constraint quantization

被引:68
作者
Giulini, D [1 ]
Marolf, D
机构
[1] Univ Zurich, CH-8057 Zurich, Switzerland
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[4] Max Planck Inst Gravitat Phys, D-14473 Potsdam, Germany
关键词
D O I
10.1088/0264-9381/16/7/322
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work addresses certain ambiguities in the Dirac approach to constrained systems. Specifically, we investigate the space of so-called 'rigging maps' associated with refined algebraic quantization, a particular realization of the Dirac scheme. Our main result is to provide a condition under which the rigging map is unique,,in which case we also show that it is given by group-averaging techniques. Our results comprise all cases where the gauge group is a finite-dimensional Lie group.
引用
收藏
页码:2489 / 2505
页数:17
相关论文
共 54 条
[1]  
[Anonymous], 1975, Homogeneous Relativistic Cosmologies. Princeton Series in Physics
[2]  
[Anonymous], 1979, FDN MECH
[3]  
Arnold V. I., 1984, MATH METHODS CLASSIC
[4]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[5]  
ASHTEKAR A, 1995, GRQC9504018
[6]  
ASHTEKAR A, 1991, NONPERTURBATIVE CANO
[7]  
BANKS T, 1998, HEPTH9811194
[8]   Quantum modular group in (2+1)-dimensional gravity [J].
Carlip, S ;
Nelson, JE .
PHYSICAL REVIEW D, 1999, 59 (02)
[9]  
CARLIP S, 1998, GRQC9807087
[10]  
CAVAGLIA M, 1999, GRQC9902004