Olivine thermal diffusivity influencing factors

被引:3
作者
Zhang, Yuliang [1 ]
Sun, Qiang [1 ]
Geng, Jishi [1 ]
机构
[1] China Univ Min & Technol, Sch Resources & Geosci, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal diffusivity; High temperature; Pressure; Oxidation; Olivine; HIGH-TEMPERATURE; MECHANICAL-PROPERTIES; TRANSPORT-PROPERTIES; HEAT-CAPACITY; UPPER-MANTLE; PHYSICAL-PROPERTIES; CONDUCTIVITY; GRANITE; ROCKS; DEPENDENCE;
D O I
10.1007/s10973-017-6945-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal diffusivity is one of the fundamental-thermal parameters for evaluating heat transmission efficiency in the earth. The thermal diffusivity of upper mantle matters has a significant value to digitize the temperature equilibration. Peridotite with the main mineral olivine, as an important rock of upper mantle, plays a considerable role in the heat transmission in the earth. To analyze the factors influencing on olivine thermal diffusivity, this paper summarized the data from a number of literatures relating to olivine and analyzed the internal reasons for its changes with elevated temperature and pressure. The changes of olivine thermal diffusivity are divided into 3 types. Thermal diffusivity decreases drastically at low temperatures in each type, while it has a different change law at high temperature. Even so, the classical physics theory, physical properties, heat radiation and partial melting were used to explain the internal reasons of those changes successfully. Besides, the relationships of thermal diffusivity and pressure and oxidation are expressed simply.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 63 条
  • [1] Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods
    Abdulagatov, I. M.
    Abdulagatova, Z. Z.
    Kallaev, S. N.
    Bakmaev, A. G.
    Ranjith, P. G.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (04) : 658 - 691
  • [2] [Anonymous], 1981, THERMAL CONDUCTIVITY
  • [3] Thermal Diffusivity and Heat of Formation of Harzburgite and Its Major Constituent Minerals
    Arafin, Sayyadul
    Singh, Ram N.
    George, Abraham K.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2011, 32 (10) : 2139 - 2147
  • [4] LATTICE CONDUCTIVITIES OF SINGLE-CRYSTAL AND POLYCRYSTALLINE MATERIALS AT MANTLE PRESSURES AND TEMPERATURES
    BECK, AE
    DARBHA, DM
    SCHLOESSIN, HH
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1978, 17 (01) : 35 - 53
  • [5] Berman R., 1976, Thermal Conductivity in Solids
  • [6] Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity
    Bourgeois, Olivier
    Tainoff, Dimitri
    Tavakoli, Adib
    Liu, Yanqing
    Blanc, Christophe
    Boukhari, Mustapha
    Barski, Andre
    Hadji, Emmanuel
    [J]. COMPTES RENDUS PHYSIQUE, 2016, 17 (10) : 1154 - 1160
  • [7] A damage-mechanism-based creep model considering temperature effect in granite
    Chen, L.
    Wang, C. P.
    Liu, J. F.
    Liu, Y. M.
    Liu, J.
    Su, R.
    Wang, J.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2014, 56 : 76 - 82
  • [8] Estimation of the thermal properties for partially saturated granite
    Cho, Won-Jin
    Kwon, Sangki
    [J]. ENGINEERING GEOLOGY, 2010, 115 (1-2) : 132 - 138
  • [9] Clauser C., 1995, Thermal conductivity of rocks and minerals, P105, DOI 10.1029/RF003p0105
  • [10] Complementary photothermal techniques for complete thermal characterization of porous and semi-transparent solids
    Dadarlat, D.
    Streza, M.
    Onija, O.
    Prejmerean, C.
    Silaghi-Dumitrescu, L.
    Cobirzan, N.
    Strzalkowski, K.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 119 (01) : 301 - 308