Railway switch transport model

被引:16
作者
Horvat, Martin [1 ]
Prosen, Tomaz [1 ]
Benenti, Giuliano [2 ,3 ,4 ]
Casati, Giulio [2 ,3 ,4 ]
机构
[1] Univ Ljubljana, Dept Phys, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Insubria, CNISM, I-22100 Como, Italy
[3] Univ Insubria, Ctr Nonlinear & Complex Syst, I-22100 Como, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 05期
关键词
COHERENT;
D O I
10.1103/PhysRevE.86.052102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a simple model of coupled heat and particle transport based on zero-dimensional classical deterministic dynamics, which is reminiscent of a railway switch whose action is a function only of the particle's energy. It is shown that already in the minimal three-terminal model, where the second terminal is considered as a probe with zero net particle and heat currents, one can find extremely asymmetric Onsager matrices as a consequence of time-reversal symmetry breaking of the model. This minimalistic transport model provides a better understanding of thermoelectric heat engines in the presence of time-reversal symmetry breaking.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Quantum heat transfer in harmonic chains with self-consistent reservoirs: Exact numerical simulations [J].
Bandyopadhyay, Malay ;
Segal, Dvira .
PHYSICAL REVIEW E, 2011, 84 (01)
[2]   Thermodynamic Bounds on Efficiency for Systems with Broken Time-Reversal Symmetry [J].
Benenti, Giuliano ;
Saito, Keiji ;
Casati, Giulio .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)
[3]  
Bolsterli M., 1970, PHYS REV A, V1, P1068
[4]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[5]   Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs [J].
Bonetto, F. ;
Lebowitz, J. L. ;
Lukkarinen, J. ;
Olla, S. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (5-6) :1097-1119
[6]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[7]   4-TERMINAL PHASE-COHERENT CONDUCTANCE [J].
BUTTIKER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1761-1764
[8]   COHERENT AND SEQUENTIAL TUNNELING IN SERIES BARRIERS [J].
BUTTIKER, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1988, 32 (01) :63-75
[9]  
Datta S., 1997, ELECT TRANSPORT MESO
[10]  
De Groot S. R., 2013, Non-Equilibrium Thermodynamics