Gas-phase broadband spectroscopy using active sources: progress, status, and applications

被引:106
作者
Cossel, Kevin C. [1 ]
Waxman, Eleanor M. [1 ]
Finneran, Ian A. [2 ]
Blake, Geoffrey A. [2 ]
Ye, Jun [3 ,4 ]
Newbury, Nathan R. [1 ]
机构
[1] NIST, 325 Broadway, Boulder, CO 80305 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] NIST, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
ENHANCED ABSORPTION-SPECTROSCOPY; MIDINFRARED SUPERCONTINUUM GENERATION; FOURIER-TRANSFORM SPECTROSCOPY; VOLATILE ORGANIC-COMPOUNDS; FREQUENCY COMB SPECTROSCOPY; CAVITY RINGDOWN SPECTROSCOPY; NOCTURNAL BOUNDARY-LAYER; CHEMICAL KINETIC-MODELS; OP-FTIR SPECTROSCOPY; MU-M;
D O I
10.1364/JOSAB.34.000104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broadband spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly used techniques. We finish this review by discussing potential future advances in techniques and applications of broadband spectroscopy. (C) 2016 Optical Society of America
引用
收藏
页码:104 / 129
页数:26
相关论文
共 344 条
  • [21] Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K
    Axson, J. L.
    Washenfelder, R. A.
    Kahan, T. F.
    Young, C. J.
    Vaida, V.
    Brown, S. S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (22) : 11581 - 11590
  • [22] MEASURING BIOSPHERE-ATMOSPHERE EXCHANGES OF BIOLOGICALLY RELATED GASES WITH MICROMETEOROLOGICAL METHODS
    BALDOCCHI, DD
    HICKS, BB
    MEYERS, TP
    [J]. ECOLOGY, 1988, 69 (05) : 1331 - 1340
  • [23] Broadband cavity enhanced absorption spectroscopy using light emitting diodes
    Ball, SM
    Langridge, JM
    Jones, RL
    [J]. CHEMICAL PHYSICS LETTERS, 2004, 398 (1-3) : 68 - 74
  • [24] Broad-band cavity ring-down spectroscopy
    Ball, SM
    Jones, RL
    [J]. CHEMICAL REVIEWS, 2003, 103 (12) : 5239 - 5262
  • [25] Broadband cavity ringdown spectroscopy of the NO3 radical
    Ball, SM
    Povey, IM
    Norton, EG
    Jones, RL
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 342 (1-2) : 113 - 120
  • [26] Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
  • [27] Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling
    Bartels, A.
    Cerna, R.
    Kistner, C.
    Thoma, A.
    Hudert, F.
    Janke, C.
    Dekorsy, T.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
  • [28] 10-GHz Self-Referenced Optical Frequency Comb
    Bartels, Albrecht
    Heinecke, Dirk
    Diddams, Scott A.
    [J]. SCIENCE, 2009, 326 (5953) : 681 - 681
  • [29] Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates
    Battin-Leclerc, F.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (04) : 440 - 498
  • [30] Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer
    Baumann, E.
    Giorgetta, F. R.
    Swann, W. C.
    Zolot, A. M.
    Coddington, I.
    Newbury, N. R.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):