The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P-and Curvature-Sensing Motifs

被引:81
作者
Horenkamp, Florian A. [1 ]
Kauffman, Karlina J. [1 ]
Kohler, Lara J. [2 ]
Sherwood, Racquel K. [2 ]
Krueger, Kathryn P. [1 ]
Shteyn, Vladimir [1 ]
Roy, Craig R. [2 ]
Melia, Thomas J. [1 ]
Reinisch, Karin M. [1 ]
机构
[1] Yale Univ, Sch Med, Dept Cell Biol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Microbial Pathogenesis, New Haven, CT 06520 USA
关键词
STRUCTURAL BASIS; SPECIFICITY; MACHINERY; SYSTEM;
D O I
10.1016/j.devcel.2015.08.010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Autophagy is a conserved membrane transport pathway used to destroy pathogenic microbes that access the cytosol of cells. The intracellular pathogen Legionella pneumophila interferes with autophagy by delivering an effector protein, RavZ, into the host cytosol. RavZ acts by cleaving membrane-conjugated Atg8/LC3 proteins from pre-autophagosomal structures. Its remarkable efficiency allows minute quantities of RavZ to block autophagy throughout the cell. To understand how RavZ targets pre-autophagosomes and specifically acts only on membrane-associated Atg8 proteins, we elucidated its structure. Revealed is a catalytic domain related in fold to Ulp family deubiquitinase-like enzymes and a C-terminal PI3P-binding module. RavZ targets the autophagosome via the PI3P-binding module and a catalytic domain helix, and it preferentially binds high-curvature membranes, intimating localization to highly curved domains in autophagosome intermediate membranes. RavZ-membrane interactions enhance substrate affinity, providing a mechanism for interfacial activation that also may be used by host autophagy proteins engaging only lipidated Atg8 proteins.
引用
收藏
页码:569 / 576
页数:8
相关论文
共 26 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Network organization of the human autophagy system [J].
Behrends, Christian ;
Sowa, Mathew E. ;
Gygi, Steven P. ;
Harper, J. Wade .
NATURE, 2010, 466 (7302) :68-U84
[3]   The LIR motif - crucial for selective autophagy [J].
Birgisdottir, Asa Birna ;
Lamark, Trond ;
Johansen, Terje .
JOURNAL OF CELL SCIENCE, 2013, 126 (15) :3237-3247
[4]  
Casas-Godoy L, 2012, METHODS MOL BIOL, V861, P3, DOI 10.1007/978-1-61779-600-5_1
[5]   Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases [J].
Chosed, Renee ;
Tomchick, Diana R. ;
Brautigam, Chad A. ;
Mukherjee, Sohini ;
Negi, Veera S. ;
Machius, Mischa ;
Orth, Kim .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (09) :6773-6782
[6]   The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation [J].
Choy, Augustine ;
Dancourt, Julia ;
Mugo, Brian ;
O'Connor, Tamara J. ;
Isberg, Ralph R. ;
Melia, Thomas J. ;
Roy, Craig R. .
SCIENCE, 2012, 338 (6110) :1072-1076
[7]   The Role of Lipids in the Control of Autophagy [J].
Dall'Armi, Claudia ;
Devereaux, Kelly A. ;
Di Paolo, Gilbert .
CURRENT BIOLOGY, 2013, 23 (01) :R33-R45
[8]   Lipidation of the autophagy proteins LC3 and GABARAP is a membrane-curvature dependent process [J].
Dancourt, Julia ;
Melia, Thomas J. .
AUTOPHAGY, 2014, 10 (08) :1470-1471
[9]   Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) [J].
Fan, Weiliang ;
Nassiri, Ashley ;
Zhong, Qing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (19) :7769-7774
[10]   The machinery of macroautophagy [J].
Feng, Yuchen ;
He, Ding ;
Yao, Zhiyuan ;
Klionsky, Daniel J. .
CELL RESEARCH, 2014, 24 (01) :24-41