A Predictor-corrector algorithm with multiple corrections for convex quadratic programming

被引:1
作者
Liu, Zhongyi [1 ]
Chen, Yue [2 ]
Sun, Wenyu [3 ]
Wei, Zhihui [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Jincheng Coll, Nanjing 211156, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex quadratic programming; Primal-dual interior-point method; Predictor-corrector; Polynomial complexity; INTERIOR-POINT ALGORITHM; LINEAR OPTIMIZATION; SOLVER; STEP;
D O I
10.1007/s10589-011-9421-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, .
引用
收藏
页码:373 / 391
页数:19
相关论文
共 50 条
  • [21] A Predictor-Corrector Algorithm for Monotone Linear Complementarity Problems in a Wide Neighborhood
    Ma Xiaojue
    Liu Hongwei
    Zhou Chang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [22] A predictor-corrector algorithm combined conjugate gradient with homotopy interior point for general nonlinear programming
    Huang, Qingqun
    Zhu, Zhibin
    Wang, Xiangling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4379 - 4386
  • [23] A predictor-corrector algorithm for linear optimization based on a modified Newton direction
    Xu Y.
    Zhang L.
    Jin Z.
    [J]. Journal of Applied Mathematics and Computing, 2012, 40 (1-2) : 73 - 86
  • [24] Predictor-corrector image interpolation
    Zhong, Baojiang
    Ma, Kai-Kuang
    Lu, Zhifang
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 61 : 50 - 60
  • [25] A finite termination Mehrotra-type predictor-corrector algorithm
    Salahi, Maziar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1740 - 1746
  • [26] A superlinearly convergent wide-neighborhood predictor-corrector interior-point algorithm for linear programming
    Ma, Xiaojue
    Liu, Hongwei
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 669 - 682
  • [27] ON MEHROTRA-TYPE PREDICTOR-CORRECTOR ALGORITHMS
    Salahi, M.
    Peng, J.
    Terlaky, T.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) : 1377 - 1397
  • [28] A Study of the Complexity of an Infeasible Predictor-Corrector Variant of Mehrotra Algorithm
    Teixeira, Ana Paula
    Almeida, Regina
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT II, 2014, 8580 : 253 - +
  • [29] Mars entry guidance based on segmented guidance predictor-corrector algorithm
    Xia, Yuanqing
    Shen, Ganghui
    Zhou, Liuyu
    Sun, Haoran
    [J]. CONTROL ENGINEERING PRACTICE, 2015, 45 : 79 - 85
  • [30] A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm
    Luke B. Winternitz
    Stacey O. Nicholls
    André L. Tits
    Dianne P. O’Leary
    [J]. Computational Optimization and Applications, 2012, 51 : 1001 - 1036