ANGLES AND A CLASSIFICATION OF NORMED SPACES

被引:0
作者
Thurey, Volker W.
机构
关键词
Generalized angle; normed space; inner product space; INNER-PRODUCT-SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We suggest a concept of generalized angles in arbitrary real normed vector spaces. We give for each real number a definition of an 'angle' by means of the shape of the unit ball. They all yield the well known Euclidean angle in the special case of real inner product spaces. With these different angles we achieve a classification of normed spaces, and we obtain a characterization of inner product spaces. Moreover we consider this construction also for a generalization of normed spaces, i.e. for spaces which may have a non-convex unit ball.
引用
收藏
页码:114 / 137
页数:24
相关论文
共 50 条
[31]   Cone normed spaces and weighted means [J].
Sonmez, Ayse ;
Cakalli, Huseyin .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1660-1666
[32]   Embedding metric spaces into normed spaces and estimates of metric capacity [J].
Averkov, Gennadiy ;
Duevelmeyer, Nico .
MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03) :197-206
[33]   Mean p-angular distance orthogonality in normed linear spaces [J].
Heidarirad, Somaye ;
Dehghani, Mahdi ;
Jahanipur, Ruhollah .
FILOMAT, 2024, 38 (09) :3105-3120
[34]   k-Normed topological vector spaces [J].
S. V. Lyudkovskiî .
Siberian Mathematical Journal, 2000, 41 :141-154
[35]   A Variant of Wigner's Theorem in Normed Spaces [J].
Ilisevic, Dijana ;
Turnsek, Aleksej .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
[36]   Orthocenters in real normed spaces and the Euler line [J].
Alsina C. ;
Tomás M.S. .
Aequationes mathematicae, 2004, 67 (1-2) :180-187
[37]   Pyramids in three-dimensional normed spaces [J].
Makecv V.V. .
Journal of Mathematical Sciences, 2009, 161 (3) :427-430
[38]   ON LINEAR FUNCTIONAL EQUATIONS AND COMPLETENESS OF NORMED SPACES [J].
Fosner, Ajda ;
Ger, Roman ;
Gilanyi, Attila ;
Moslehian, Mohammad Sal .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01) :196-200
[39]   On Wigner’s theorem in smooth normed spaces [J].
Dijana Ilišević ;
Aleksej Turnšek .
Aequationes mathematicae, 2020, 94 :1257-1267
[40]   A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES [J].
Mytrofanov, M. A. ;
Ravsky, A., V .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) :107-110